Larviculture Washington University in St. Louis, School of Medicine, Saint Louis, Missouri USA #### critical #### critical #### critical critical #### good embryo care is critical handling, cleanup, storage, density. out of the box vs. fire-polished Pasteur transfer pipet good embryo care is critical handling, cleanup, storage, density. out of the box vs. fire-polished ## good embryo care is critical coleps, fungi, hypoxia, etc. Effects of hypoxia are wide-ranging. From developmental retardation and abnormalities to primordial germ cell migration defects, and disruption of pathfinding of forebrain neurons. more than 10K hits on Google scholar "zebrafish hypoxia" | Hatching | Long-pec | 48 h | EL = 3.1 mm; elongated pectoral fin buds | |---------------------------|------------------|-------|---| | (48 - 72 h) | Pec-fin | 60 h | EL = 3.3 mm; pectoral fin blades | | Larval | Protruding-mouth | 72 h | 3.5 mm total body length | | | Day 4 | 96 h | 3.7 mm total body length | | | Day 5 | 120 h | 3.9 mm total body length; 6 teeth | | | Day 6 | 144 h | 4.2 mm total body length | | | Days 7-13 | 168 h | 4.5 mm total body length; 8 teeth | | | Days 14-20 | 14 d | 6.2 mm total body length; 10 teeth | | | Days 21-29 | 21 d | 7.8 mm total body length | | Juvenile | Days 30-44 | 30 d | 10 mm total body length; adult fins/pigment | | | Days 45-89 | 45 d | 14 mm total body length; 12 teeth | | Adult (90 d - 2 y) | | 90 d | Breeding adult | #### clear definitions? according to Zfin #### clear definitions embryo & larvae ## Too early and too much water #### Waiting too long can be disasterous both are 10dpf and same clutch the left, offered food at 4pdf; on the right offered food at 7dpf ## When to start feeding time isn't the best or absolute answer ## When to start feeding time isn't the best or absolute answer ## When to start feeding time isn't the best or absolute answer #### first-feeding methods and options (a need for a clearer understanding of what the conditions in the tank are and what they mean for fish survival and growth) ``` Not All Algae are = (or even real alagae) *5-10g/L of system water *(?ammonia binder?) *~50mL/tank (3.5L) *3X/day *slow-med pace drip *make it DARK! ``` ## Green-water technique larval fish feeding on rotifers larval fish feeding on rotifers larval fish tanks with rotifers | # of tanks
(3.5L) to feed
rotifers to
300 | # of L
needed for
feedout
(30mL/tank) | # rotifers (M)
needed for
feedout
31.5 | |--|--|---| | 275 | 8.25 | 28.875 | | 250 | 7.5 | 26.25 | | 225 | 6.75 | 23.625 | | 200 | 6 | 21 | | 190 | 5.7 | 19.95 | | | | | | 180 | 5.4 | 18.9 | | 170 | 5.1 | 17.85 | | 160 | 4.8 | 16.8 | | 150 | 4.5 | 15.75 | | 140 | 4.2 | 14.7 | | 130 | 3.9 | 13.65 | | 120 | 3.6 | 12.6 | | 110 | 3.3 | 11.55 | | 100 | 3 | 10.5 | | 90 | 2.7 | 9.45 | | 80 | 2.4 | 8.4 | | 70 | 2.1 | 7.35 | | 60 | 1.8 | 6.3 | | 50 | 1.5 | 5.25 | | 40 | 1.2 | 4.2 | | 30 | 0.9 | 3.15 | | 20 | 0.6 | 2.1 | | 10 | 0.3 | 1.05 | ~30000/tank/day ~1000/fish #### How much (many) rotifers? This is my "ideal" situation. Less will work fine. If it smells bad..... If it looks milky/hazy/cloudy... If there is a scum or a slick...... These conditions require an ACTION from you What actions do you take? #### Trust your senses and your intuition use your nose and your eyes! rotifer fed larvae stressed due to scum on water difference in water surface between slow-stream to rapid drip #### Let them eat... your observations are the basis for diet changes ## graphic tools empower the staff and researchers to make decisions and avoid making mistakes zoo/phyto-plankton? #### post-metamorphic feed choices live and prepared (greenwater) #### live diets artemia rotifers daphnia? copepods? other plankton? #### prepared diets aquaculture feeds vs. hobbyist feeds differing protein sources and bio-availability fatty acid profiles tuned to warm vs. coldwater fish carotenoids (antioxidants) differing bouyancies (dispersal differences) #### post-metamorphic feed choices live, and prepared #### How to apply? #### top fed (dry) distribution problems aggression runting (competition related) mouth (cranio-facial deformities) #### Liquified how to homogenize how to quantify and distribute- metered dose? shelf life- none. #### post-metamorphic feeds prepared diets 32dpf #### clear definitions? juvenile & adult metamorphasis to sexual di-morphism/maturity 40dpf adult fish feeding on rotifers ## Feeding Frequencies larvae constant juvenile high frequency sub-adult high frequency downstream effects of stocking choices temperature and density (larvae/L) | | | | | | | | Nursery | males per | | |-------------------------|--|-------------|----------|------------|------------|----------|-----------|-----------|-----------------| | | stock# | fert. Date | 25C | 32C | female QTY | male QTY | fish/L | female | percent females | | | 11162 | 19-Jun-09 | | Х | 23 | 94 | 3.9 | 4.1 | 19.66% | | | 11162 | 19-Jun-09 | | X | 24 | 80 | 3.5 | 3.3 | 23.08% | | | 11162 | 19-Jun-09 | | X | 16 | 93 | 3.6 | 5.8 | 14.68% | | | 11162 | 19-Jun-09 | | X | 8 | 72 | 2.7 | 9.0 | 10.00% | | | 11162 | 19-Jun-09 | | X | 16 | 66 | 2.7 | 4.1 | 19.51% | | | 11162 | 19-Jun-09 | | * | 12 | 62 | 2.5 | 5.2 | 16.22% | | | 11162 | 19-Jun-09 | | * | 23 | 60 | 2.8 | 2.6 | 27.71% | | low temp, low density | 11230 | 24-Jun-09 | X | | 25 | 19 | 1.5 | 0.8 | 56.82% | | low temp, low density | 11230 | 24-Jun-09 | X | | 19 | 31 | 1.7 | 1.6 | 38.00% | | | 11162 | 19-Jun-09 | | X | 13 | 63 | 2.5 | 4.8 | 17.11% | | high temp, low density | 11162 | 19-Jun-09 | | Χ | 12 | 26 | 1.3 | 2.2 | 31.58% | | | 11162 | 19-Jun-09 | | X | 26 | 64 | 3.0 | 2.5 | 28.89% | | | 11162 | 19-Jun-09 | | Χ | 22 | 60 | 2.7 | 2.7 | 26.83% | | high temp, high density | 11162 | 19-Jun-09 | | X | 3 | 108 | 3.7 | 36.0 | 2.70% | | | 11230 | 24-Jun-09 | X | | 16 | 150 | 5.5 | 9.4 | 9.64% | | | 11230 | 24-Jun-09 | X | | 13 | 231 | 8.1 | 17.8 | 5.33% | | low temp, high density | 11230 | 24-Jun-09 | X | | 3 | 206 | 7.0 | 68.7 | 1.44% | | | 11230 | 24-Jun-09 | X | | 10 | 194 | 6.8 | 19.4 | 4.90% | | | | | | | | | | | | | | | | | | n = | 1963 | | | | | | X= raice | d at this t | emnerati | ire from (| odof to ad | lulthood | | | | | | | | • | | | | od at 22/ | <u> </u> | | | | *= 0-6dpf at 32C, 6dpf-19dpf at 25C, 19dpf to adulthood at 32C | | | | | | | | | #### downstream effects of stocking choices temperature and density (larvae/L) # When are they ready to breed? | | Feedout | | amount | | Feedout | | amount | | Feedout | | amount | |--------|---------|-------|------------|--------|---------|-----------|------------|--------|---------|-----------|------------| | | Artemia | total | of culture | | Artemia | | of culture | | Artemia | | of culture | | OTV of | needed | (g) | water | QTY of | needed | total (g) | water | QTY of | needed | total (g) | water | | | (L) | decap | (4.5ppt) | Tanks | (L) | decap | (4.5ppt) | Tanks | (L) | decap | (4.5ppt) | | 200 | 1 | 13.5 | 3 | 3600 | | 243.0 | 61 | 7100 | 35.5 | 479.3 | | | 300 | 1.5 | 20.3 | 5 | 3700 | 18.5 | 249.8 | 62 | 7200 | 36 | 486.0 | 122 | | 400 | 2 | 27.0 | 7 | 3800 | 19 | 256.5 | 64 | 7300 | 36.5 | 492.8 | 123 | | 500 | 2.5 | 33.8 | 8 | 3900 | 19.5 | 263.3 | 66 | 7400 | 37 | 499.5 | 125 | | 600 | 3 | 40.5 | 10 | 4000 | 20 | 270.0 | 68 | 7500 | 37.5 | 506.3 | 127 | | 700 | 3.5 | 47.3 | 12 | 4100 | 20.5 | 276.8 | 69 | 7600 | 38 | 513.0 | 128 | | 800 | 4 | 54.0 | 14 | 4200 | 21 | 283.5 | 71 | 7700 | 38.5 | 519.8 | 130 | | 900 | 4.5 | 60.8 | 15 | 4300 | 21.5 | 290.3 | 73 | 7800 | 39 | 526.5 | 132 | | 1000 | 5 | 67.5 | 17 | 4400 | 22 | 297.0 | 74 | 7900 | 39.5 | 533.3 | 133 | | 1100 | 5.5 | 74.3 | 19 | 4500 | 22.5 | 303.8 | 76 | 8000 | 40 | 540.0 | 135 | | 1200 | 6 | 81.0 | 20 | 4600 | 23 | 310.5 | 78 | 8100 | 40.5 | 546.8 | 137 | | 1300 | 6.5 | 87.8 | 22 | 4700 | 23.5 | 317.3 | 79 | 8200 | 41 | 553.5 | 138 | | 1400 | 7 | 94.5 | 24 | 4800 | 24 | 324.0 | 81 | 8300 | 41.5 | 560.3 | 140 | | 1500 | 7.5 | 101.3 | 25 | 4900 | 24.5 | 330.8 | 83 | 8400 | 42 | 567.0 | 142 | | 1600 | 8 | 108.0 | 27 | 5000 | 25 | 337.5 | 84 | 8500 | 42.5 | 573.8 | 143 | | 1700 | 8.5 | 114.8 | 29 | 5100 | 25.5 | 344.3 | 86 | 8600 | 43 | 580.5 | 145 | | 1800 | 9 | 121.5 | 30 | 5200 | 26 | 351.0 | 88 | 8700 | 43.5 | 587.3 | 147 | | 1900 | 9.5 | 128.3 | 32 | 5300 | 26.5 | 357.8 | 89 | 8800 | 44 | 594.0 | 149 | | 2000 | 10 | 135.0 | 34 | 5400 | 27 | 364.5 | 91 | 8900 | 44.5 | 600.8 | 150 | | 2100 | 10.5 | 141.8 | 35 | 5500 | 27.5 | 371.3 | 93 | 9000 | 45 | 607.5 | 152 | | 2200 | 11 | 148.5 | 37 | 5600 | 28 | 378.0 | 95 | 9100 | 45.5 | 614.3 | 154 | | 2300 | 11.5 | 155.3 | 39 | 5700 | 28.5 | 384.8 | 96 | 9200 | 46 | 621.0 | 155 | | 2400 | 12 | 162.0 | 41 | 5800 | 29 | 391.5 | 98 | 9300 | 46.5 | 627.8 | 157 | | 2500 | 12.5 | 168.8 | 42 | 5900 | 29.5 | 398.3 | 100 | 9400 | 47 | 634.5 | 159 | | 2600 | 13 | 175.5 | 44 | 6000 | 30 | 405.0 | 101 | 9500 | 47.5 | 641.3 | 160 | | 2700 | 13.5 | 182.3 | 46 | 6100 | 30.5 | 411.8 | 103 | 9600 | 48 | 648.0 | 162 | | 2800 | 14 | 189.0 | 47 | 6200 | 31 | 418.5 | 105 | 9700 | 48.5 | 654.8 | 164 | | 2900 | 14.5 | 195.8 | 49 | 6300 | 31.5 | 425.3 | 106 | 9800 | 49 | 661.5 | 165 | | 3000 | 15 | 202.5 | 51 | 6400 | 32 | 432.0 | 108 | 9900 | 49.5 | 668.3 | 167 | | 3100 | 15.5 | 209.3 | 52 | 6500 | 32.5 | 438.8 | 110 | 10000 | 50 | 675.0 | 169 | | 3200 | 16 | 216.0 | 54 | 6600 | 33 | 445.5 | 111 | 10100 | 50.5 | 681.8 | 170 | | 3300 | 16.5 | 222.8 | 56 | 6700 | 33.5 | 452.3 | 113 | 10200 | 51 | 688.5 | 172 | | 3400 | 17 | 229.5 | 57 | 6800 | 34 | 459.0 | 115 | | | | | | 3500 | 17.5 | 236.3 | 59 | 6900 | 34.5 | 465.8 | 116 | | | | | | | | | | 7000 | 35 | 472.5 | 118 | | | | | | 1-L
bottles | | | | | (1) | | | | | | |----------------------------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-------| | needed
1 | 37 | 39 | 42 | cone dosa | 48 | 51 | 53 | 56 | 59 | 62 | | 1.5 | 56 | 59 | 63 | 68 | 72 | 76 | 80 | 84 | 88 | 93 | | 2 | 74 | 79 | 84 | 90 | 96 | 101 | 107 | 113 | 118 | 124 | | 2.5 | 93 | 98 | 105 | 113 | 120 | 126 | 133 | 141 | 147 | 155 | | 3 | 111 | 118 | 127 | 135 | 144 | 152 | 160 | 169 | 177 | 186 | | 3.5 | 130 | 138 | 148 | 158 | 168 | 177 | 187 | 197 | 206 | 217 | | 4 | 148 | 157 | 169 | 180 | 191 | 202 | 213 | 225 | 236 | 248 | | 4.5 | 167 | 177 | 190 | 203 | 215 | 228 | 240 | 253 | 265 | 279 | | 5 | 185 | 197 | 211 | 225 | 239 | 253 | 267 | 281 | 295 | 310 | | 5.5 | 204 | 216 | 232 | 248 | 263 | 278 | 293 | 309 | 324 | 341 | | 6 | 223 | 236 | 253 | 270 | 287 | 303 | 320 | 338 | 354 | 372 | | 6.5 | 241 | 256 | 274 | 293 | 311 | 329 | 347 | 366 | 383 | 403 | | 7 | 260 | 276 | 295 | 315 | 335 | 354 | 374 | 394 | 413 | 433 | | 7.5 | 278 | 295 | 316 | 338 | 359 | 379 | 400 | 422 | 442 | 464 | | 8 | 297 | 315 | 338 | 360 | 383 | 404 | 427 | 450 | 472 | 495 | | 8.5 | 315 | 335 | 359 | 383 | 407 | 430 | 454 | 478 | 501 | 526 | | 9 | 334 | 354 | 380 | 405 | 431 | 455 | 480 | 506 | 531 | 557 | | 9.5 | 352 | 374 | 401 | 428 | 455 | 480 | 507 | 534 | 560 | 588 | | 10 | 371 | 394 | 422 | 450 | 479 | 506 | 534 | 563 | 590 | 619 | | 10.5 | 389 | 413 | 443 | 473 | 503 | 531 | 560 | 591 | 619 | 650 | | 11 | 408 | 433 | 464 | 495 | 527 | 556 | 587 | 619 | 648 | 681 | | 11.5 | 427 | 453 | 485 | 518 | 551 | 581 | 614 | 647 | 678 | 712 | | 12 | 445 | 472 | 506 | 540 | 574 | 607 | 640 | 675 | 707 | 743 | | 12.5 | 464 | 492 | 527 | 563 | 598 | 632 | 667 | 703 | 737 | 774 | | 13 | 482 | 512 | 548 | 585 | 622 | 657 | 694 | 731 | 766 | 805 | | 13.5 | 501 | 531 | 570 | 608 | 646 | 683 | 720 | 759 | 796 | 836 | | 14 | 519 | 551 | 591 | 630 | 670 | 708 | 747 | 788 | 825 | 867 | | 14.5 | 538 | 571 | 612 | 653 | 694 | 733 | 774 | 816 | 855 | 898 | | 15 | 556 | 590 | 633 | 675 | 718 | 758 | 800 | 844 | 884 | 929 | | 15.5 | 575 | 610 | 654 | 698 | 742 | 784 | 827 | 872 | 914 | 960 | | 16 | 593 | 630 | 675 | 720 | 766 | 809 | 854 | 900 | 943 | 991 | | 16.5 | 612 | 649 | 696 | 743 | 790 | 834 | 880 | 928 | 973 | 1022 | | 17 | 630 | 669 | 717 | 765 | 814 | 860 | 907 | 956 | 1002 | 1053 | | 17.5 | 649 | 689 | 738 | 788 | 838 | 885 | 934 | 984 | 1032 | 1084 | | decap
density
(g/mL) | 0.364 | 0.343 | 0.320 | 0.300 | 0.282 | 0.267 | 0.253 | 0.240 | 0.229 | 0.218 | ## How to determine your feed dosages Lila Solnica-Krezel (and lab members) Stephen Canter Kathleen and Finley Sanker-Sanders Dillon Streets, Marco Brocca, Debora Nisi Christian Lawrence George Sanders **Jason Cockington Gregory Paull** Carole Wilson Michael Kent Tecniplast, IWT #### Thanks