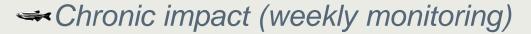


University of Queensland Biological Resources


Monitoring Water Quality

- water temperature
- **₩** pH
- Conductivity (salinity)
- ➤ Dissolved Oxygen / TGP (design dependent)
- ➤ Ammonia (stock movement dependent)
- Chlorine (source water dependent)

Monitoring Water Quality

- **₩** Nitrate
- > Nitrite
- **→** Hardness
- **₩** Alkalinity
- **>** CO₂

Monitoring Water Quality

- Integrated monitoring systems and probes
- **₩** Handheld devices
- Chemical test kits
- Test strips

Colorimetric Test Kits

5th Annual International Zebrafish Husbandry Course

- Reagents should be in date
- Tester must be able to determine color change

http://www.xrite.com/custom_page.aspx?pageid=77&lang=en

Colorimetric Test Kits

5th Annual International Zebrafish Husbandry Course

Hach™ "Fish Farming" Test Kit (FF-1A)

Free Ammonia indicator

API® – Ammonia test kit most reliable

Wide range pH test kit

Test Strips for: ammonia, chlorine nitrate, nitrite, general hardness (GH), alkalinity (KH) and pH

Electronic meters & probes

- Fast test with high degree of accuracy
- Probes must be properly maintained and calibrated

YSI 556 MPS –	portable	multiprobe
---------------	----------	------------

YSI 556 System Specifications (Instrument with Cable & Probe)						
	Sensor Type	Range	Accuracy	Resolution		
Dissolved Oxygen (%)	Polarographic	0 to 500% air saturation	0 to 200% air saturation, \pm 2% of the reading or \pm 2% air saturation, whichever is greater; 200 to 500% air saturation, \pm 6% of the reading	0.1% air saturation		
Dissolved Oxygen (mg/L)	Polarographic	0 to 50 mg/L	0 to 20 mg/L, \pm 0.2 mg/L or \pm 2% of reading, whichever is greater; 20 to 50 mg/L, \pm 6% of the reading	0.01 mg/L		
Temperature	Thermistor	-5 to 45°C	±0.15°C	0.1°C		
Conductivity	Four electrode cell	0 to 200 mS/cm (auto range)	$\pm 0.5\%$ of reading or 0.001 mS/cm, whichever is greater (4-m cable) $\pm 1\%$ of reading or 0.001 mS/cm, whichever is greater (20-m cable)	0.001 mS/cm to 0.1 mS/cm (range dependent)		
Salinity	Calculated from conductivity and temperature	0 to 70 ppt	±1.0% of reading or 0.1 ppt, whichever is greater	0.01 ppt		
pH (optional)	Glass Combination Electrode	0 to 14 units	±0.2 units	0.01 units		
ORP (optional)	Platinum button	-1999 to +1999 mV	±20 mV	0.1 mV		
Total Dissolved Solids (TDS)	Calculated from conductivity and temperature	0 too 100 g/L		4 digits		
Barometer (optional)		500 to 800 mmHg	± 3 mmHg within $\pm 10^{\circ}\text{C}$ temperature range from calibration point	0.1 mmHg		

Spectrophotometry

5th Annual International Zebrafish Husbandry Course

- → More precise readings
- *Slower tests*

Industrial Test Systems eXact Micro 7+

Hach DR 3900 Benchtop Spectrophotometer

Guided Procedures

The DR 3900 guides you step-by-step through the testing procedure like a GPS, so you can get the accurate results you need every time.

Elimination of False Readings

Scratched, flawed, or dirty glassware becomes a non-issue when your machine takes 10 readings and eliminates outliers.

Hands Free Updates*

RFID technology automatically updates the program calibration factors when you place a TNTplus box near the machine. *RFID technology currently available in US, Canada, Puerto Rico, Australia, New Zealand, and Colombia only.

Flexible Connectivity

Built with 1 ethernet and 3 USB ports, the DR 3900 easily connects to your computer and is programmed to easily interface with Hach WIMS™ or any LIMS system.

Sample Tracking*

Sample bottles with smart tags can easily be tracked with the optional Hach RFID sample-ID system, eliminating sample mix-ups and providing better sample traceability.

Integrated monitoring

- Independent control and alarming
- **≪**Remote monitoring
- → Graphical User Interface

Integrated monitoring

5th Annual International Zebrafish Husbandry Course

Automated System control

- Touch screen interface

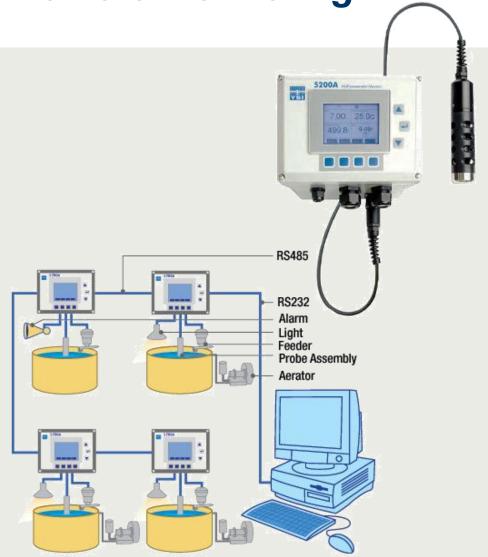
Monitor various parameters in real time

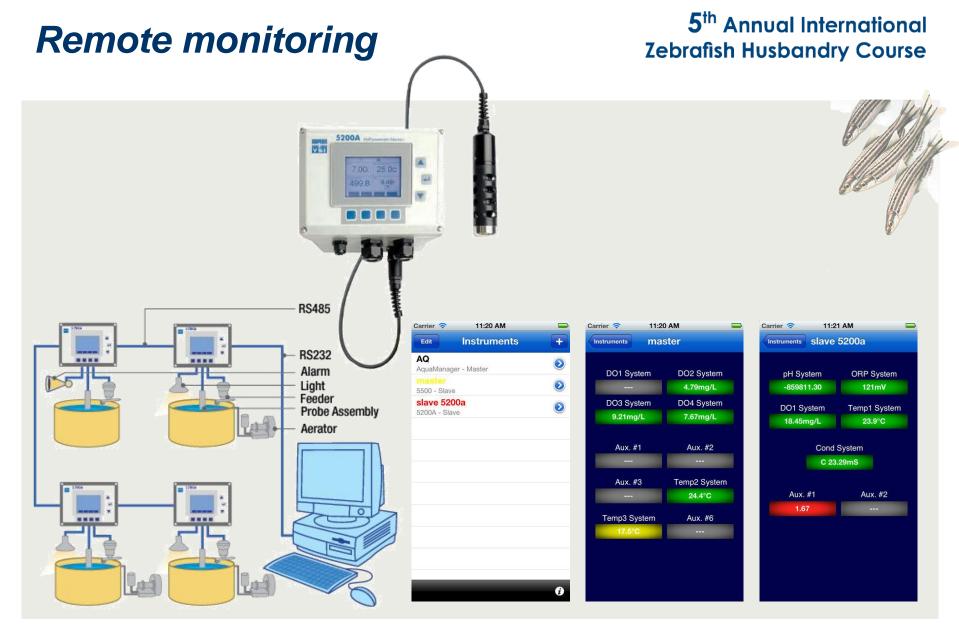
- Temperature
- pH
- Conductivity
- Water level
- Flow
- Total gas pressure (TGP)
- dissolved oxygen

Automatic control of environment

- Flow rates
- UV dosage
- Heater/chiller
- pH dosing
- Conductivity dosing
- Water exchange

Remote alarm


- BMS integration
- phone/email alarms



Remote monitoring

Managing Off Target Culture Conditions

- →Water temperature
- **⇒**pH
- Conductivity (salinity)
- Dissolved Oxygen / TGP (design dependent)
- Ammonia (stock movement dependent)
- Chlorine (source water dependent)

Conductivity (salinity)

5th Annual International Zebrafish Husbandry Course

→Natural habitat salinity as 0.6ppt (1,200µS)

Spence et al (2006)

→ Dechlorinated municipal supply often suitable as is

~1,000-1,500μS

Reverse osmosis water requires conditioning to use

≈~20µS or less

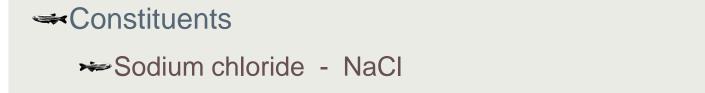
Manipulate with conductivity salts

Salt is salt, right?

5th Annual International Zebrafish Husbandry Course

Options to consider

- Synthetic marine salt
- Rift lake salt
- ➤ Pool salt
- Table salt

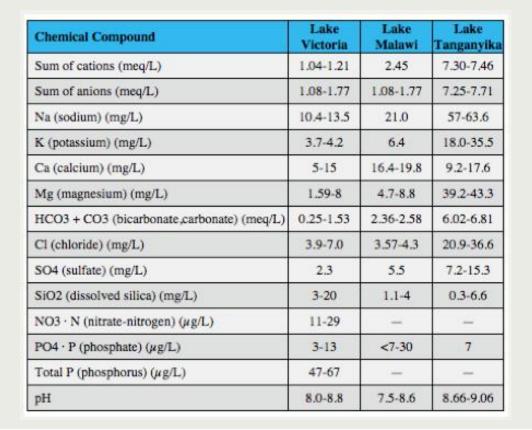


5th Annual International Zebrafish Husbandry Course

Table Salt

Epsom Salt

≪Constituents


➤ Magnesium chloride - MgCl₂

Rift Lake Salt

5th Annual International Zebrafish Husbandry Course

→ Constituents

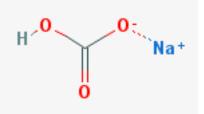
Synthetic Marine Salt

5th Annual International Zebrafish Husbandry Course

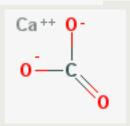
≪Constituents

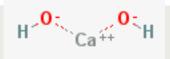
Chloride,	CI2	19,500	Molybdenium,	Mo	0.01	L Zirconium,	Zr	0.00003	Cerium,	Ce	1x10-6
Sodium,	Na	10,770	Arsenic,	As	0.0037	Bismuth,	Bi	0.00002	Dysprosium,	Dy	9x10-7
Magnesium,	Mg	1,290	Uranium,	U	0.0032	Niobium,	Nb	0.00001	Erbium,	Er	8x10-7
Sulfur,	S	905	Vanadium,	V	0.0025	Thallium,	Τl	0.00001	Ytterbium,	Yb	8x10-7
Calcium,	Ca	412	Titanium,	Ti	0.001	Thorium,	Th	0.00001	Gadolinium,	Gd	7x10-7
Potassium,	K	380	Zinc,	Zn	0.0005	Hafnium,	Hf	7x10-6	Praseodymium,	Pr	6x10-7
Bromide,	Br	67	Nickel,	Ni	0.00048	Helium,	He	6.8x10-6	Scandium,	Sc	6x10-7
Carbon,	С	28	Aluminium,	Αl	0.0004	Beryllium,	Be	5.6x10-6	Tin,	Sn	6x10-7
Nitrogen,	Ν	11.5	Cesium,	Cs	0.0004	Germanium,	Ge	5x10-6	Holmium,	Но	2x10-7
Strontium,	Sr	8	Chromium,	Cr	0.0003	Gold,	Au	4x10-6	Lutetium,	Lu	2x10-7
Oxygen,	0	6	Antimony,	Sb	0.00024	Rhenium,	Re	4x10-6	Thulium,	Tm	2x10-7
Boron,	В	4.4	Krypton,	Kr	0.0002	Cobalt,	Co	3x10-6	Indium,	In	1x10-7
Silicon,	Si	2	Selenium,	Se	0.0002	Lanthanum,	La	3x10-6	Trebium,	Tb	1x10-7
Fluoride,	F	1.3	Neon,	Ne	0.00012	Neodymium,	Nd	3x10-6	Palladium,	Pd	5x10-8
Argon,	Ar	0.43	Manganese,	Mn	0.0001	Lead,	Pb	2x10-6	Samarium,	Sm	5x10-8
Lithium,	Li	0.18	Cadmium,	Cd	0.0001	Silver,	Ag	2x10-6	Tellurium,	Te	1x10-8
Rubidium,	Rb	0.12	Copper,	Cu	0.0001	Tantalum,	Ta	2x10-6	Europium,	Eu	1x10-8
Phosphorus,	Р	0.06	Tungsten,	W	0.0001	Gallium,	Ga	2x10-6	Radium,	Ra	7x10-11
Iodine,	1	0.06	Iron,	Fe	0.000055	Yttrium,	Υ	1.3x10-6	Protactinium,	Pa	5x10-11
Barium,	Ва	0.02	Xenon,	Xe	0.00005	Mercury,	Hg	1x10-6	Radon,	Rn	6x10-16
							_				

Managing pH


5th Annual International Zebrafish Husbandry Course

$$Arr$$
Target = 7.5


Options for manipulating pH?


Increasing pH

5th Annual International Zebrafish Husbandry Course

Options to consider

Base

Sodium bicarbonate Calcium carbonate Calcium hydrate Formula
NaHCO3
CaCO3
Ca(OH)2
(lime water - CaO:H2O)

Normality	рΗ	Soulbility
0.1 N	8.4	9 g/100 mL (20°C)
saturated	9.4	0.001 g/100ml (20°C)
saturated	12.4	0.16 g/100ml (20°C)

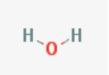
Kalkwasser (pH = 12.4)

5th Annual International Zebrafish Husbandry Course

→ Natural White Vinegar (5%) 250ml

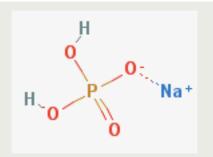
→ Hydrated Lime - Ca(OH)₂ 85g

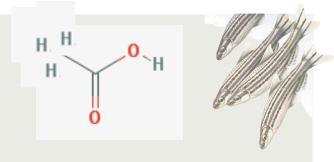
→RO Water 20L



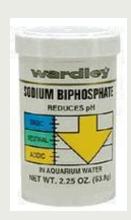
When milky, slowly add water avoiding bubbles

Cover container to minimise air exchange




Decreasing pH

5th Annual International Zebrafish Husbandry Course


Options to consider

Acid RO Water Sodium biphosphate Acetic acid

Formula	Normality	рН	Solubility
H20	-	~5-6.5	-
H2NaO4P	1%	4.5	85 g/100ml (20°C)
CH3COOH	5%	2.4	100 g/100ml (25°C)

Acetic acid in the aquarium

5th Annual International Zebrafish Husbandry Course

On addition

$$\sim$$
 CH₃COO⁻ + 2O₂ \rightarrow 2CO₂ + H₂O + OH⁻

net addition is simply carbon dioxide

$$H^+ + OH^- \rightarrow H_2O$$

$$\sim$$
 CH₃COOH + 2O₂ \rightarrow 2CO₂ + 2 H₂O

pH effect on Ammonia

5th Annual International Zebrafish Husbandry Course

→ Total Ammonia Nitrogen (TAN) = NH₄⁺ + NH₃

→ TAN species ratio influenced by pH

$$TAN = 1.0$$
ppm, $NH_3 = 0.0234$ ppm

$$TAN = 1.0$$
ppm, $NH_3 = 0.0677$ ppm

5th Annual International Zebrafish Husbandry Course

→Options to consider:

- Reduce pH to shift species ratio
- Increase biofilter bacteria
- Add water conditioner

5th Annual International Zebrafish Husbandry Course

- Nitrifying bacteria have reduced growth and activity at pH levels below 6.4
- Heavy metal toxicity increases as pH drops below 7
 - Not recommended for municipal water source systems

- ✓Increase biofilter bacteria
 - Concentrated lag-phase bacterial cultures
 - Effectiveness hotly debated

5th Annual International Zebrafish Husbandry Course

→ Water conditioner

- Binds free ammonia, detoxifying it until biofilter responds
- Many also bind chlorine & chloromines, and other nitrogen species
- Cannot be used with some ammonia tests

Raising Liquid Assets

High Nitrates

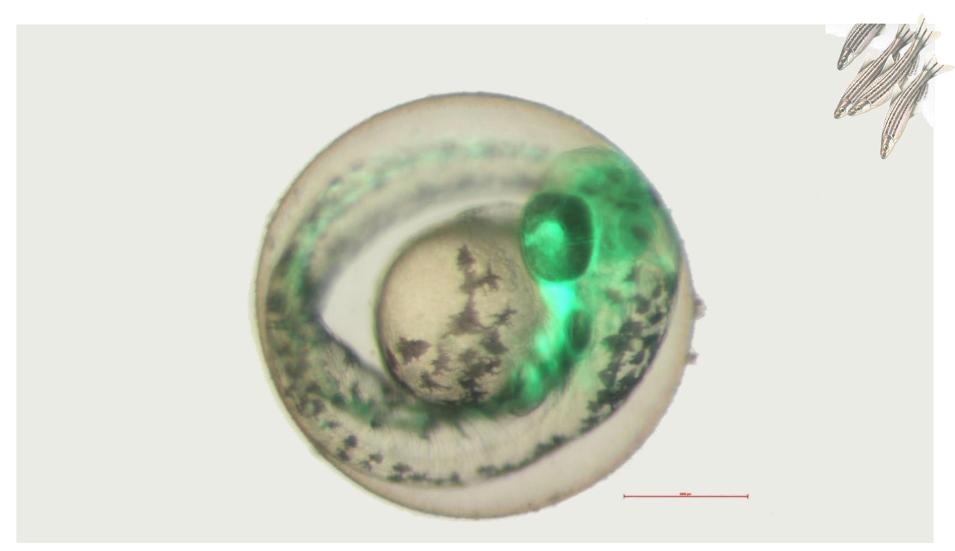
5th Annual International Zebrafish Husbandry Course

→NO₃ >50ppm not toxic until 400ppm (learmonth & carvalho, 2015)

Options to consider:

- ➤ Increased water exchange
 - Impact on other water parameters
- **₩** Water conditioner
- Emerging technology Nitrate filter

High Nitrates


5th Annual International Zebrafish Husbandry Course

≪ Nitrate Filter

- --- Autotrophic sulfur denitrification
- Run in parallel to filtration system
- Require anaerobic conditions
 - Bacteria utilise O₂ from NO₃
 - CO₂ & N₂ are produced
 - CO₂ is passed through CaCO₃ source

Questions?

