

Water Quality Fundamentals

Jason Cockington Aquatics Manager UQ Biological Resources

Intensive Aquaculture

- → Pond culture
- **★**Long lines
- → Flow through systems
- Recirculating Aquaculture Systems (RAS)

Deakin University - Aquaculture Research Centre

Cage culture in dams

Mussel longline culture

Victorian fish hatchery raceways

RAS Aquaria

5th Annual International Zebrafish Husbandry Course

→ Benefits

- High density stocking
- **➤** Self-contained production systems
- Greater control over the culture environment
- ➤ Increased bio-security
- ► Minimal water exchange ~10% system volume/24hrs

RAS Aquaria

5th Annual International Zebrafish Husbandry Course

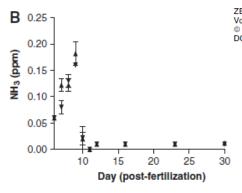
- Capital outlay
- ➤ Disease containment
- Mechanical failure, oxygen depletion, toxin levels
- Skilled labour required to maintain, monitoring often intensified
- **₩** Water Quality

Water Quality is Key Stone

- Aquariums are complex dynamic biological systems affected by multiple variable interactions
- → Water quality is critical to the successful operation of any aquaria holding system
- Changes can range from seconds to minutes, minutes to hours, and days to months
- Consistent condition and routine monitoring is required

Water Quality

- Minimal scientific consensus throughout industry
- Most current standards are based on
 - ₩ USEPA Red Book (1976)
 - **₩** What has been done traditionally
 - >>> What appears successful in the laboratory setting
- Minimal numbers of controlled studies have been done to evaluate what parameters are best for captive zebrafish

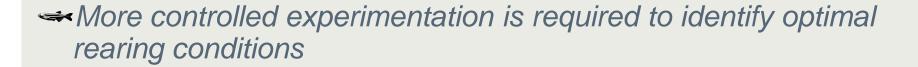

Ammonia Example

5th Annual International Zebrafish Husbandry Course

<0.02mg/L NH₃ for freshwater life

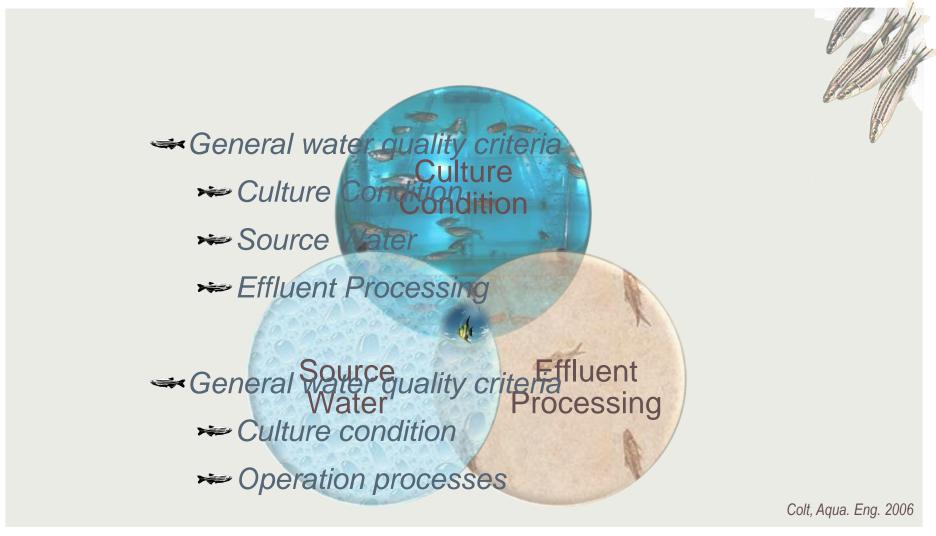
→ Best et al. (2010) reported

*→ 0.18mg/L NH*₃ with no obvious detrimental effects to 9dpf zebrafish alevin


Volume 7, Number 3, 2010 © Mary Ann Liebert, Inc. DOI: 10.1089/zeb.2010.0667

> A Novel Method for Rearing First-Feeding Larval Zebrafish: Polyculture with Type L Saltwater Rotifers (*Brachionus plicatilis*)

Jason Best, Isaac Adatto, Jason Cockington, Althea James, and Christian Lawrence

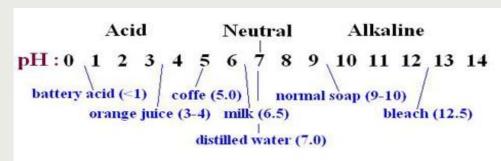

Take home message

- Selection of water quality parameters should be
 - Species specific
 - **➤** Life stage specific

Understanding Water Quality

Tendeestanding Water Quality

Power of Hydrogen (pH)


5th Annual International Zebrafish Husbandry Course

⇒ pH tolerance

★ Target = 7.5-8

- Measurement of basic, acidic, or neutral qualities of a solution
- ■Will fluctuate in recirculating systems
 - **Respiration**
 - **➤** Nitrification

http://www.all-about-ph.com/ph-scale.html

Power of Hydrogen (pH)

- → pH changes must be done gradually
- → A shift from 7 to 8 represents the water becoming 10 times more alkaline

- increases in concentration of NH₃ (most toxic form)
- **★Low pH causes:**
 - decreases in activity of nitrifying bacteria
 - increases toxicity of heavy metals

Power of Hydrogen (pH)

- Respiration effect
 - ► Increased CO₂ will decrease pH
 - ➤ Depending on alkalinity, can ↓NH₃:NH₄+ in TAN

- → Nitrification effect
 - Nitrification consumes alkalinity, decreasing pH
 - NH₃ toxicity decreases with decreasing pH
 - Nitrifying bacteria have reduced growth and activity at pH levels below 6.4

Hardness

5th Annual International Zebrafish Husbandry Course

➤ Target >100ppm

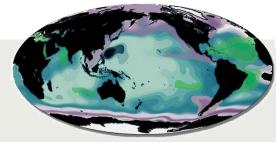
→ Alkalintiy / Carbonate Hardness (KH)

$$\Rightarrow$$
 anions - $HCO_3^- + CO_3^-$

General Hardness (GH)

5th Annual International Zebrafish Husbandry Course

The sum concentrations of calcium, magnesium, and other divalent cations


- Effected by the geology of the watershed of the source
- Freshwater fish blood ions are higher than the water
- ✓ Increasing hardness:
 - > Decreases osmoregulatory stress
 - >>> Decreases the toxicity of dissolved metals like copper and zinc

Carbonate Hardness (KH)

- Sum of bicarbonate (HCO₃⁻) and carbonate (CO₃⁻⁻) anions in the water
- Reflects the buffering capacity of the water or the stability of pH
- Dissolved metals (copper, zinc, and aluminium) are more toxic to fish in water of low alkalinity

Salinity and Conductivity

5th Annual International Zebrafish Husbandry Course

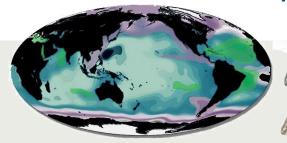
Salinity Tolerance

₩ 0.2-2.0ppt

➤ Target 0.25-0.75ppt

Salinity measures salts of the alkali metals or magnesium

Conductivity Tolerance


300-4000µS/cm² 300-4000µS/cm²

➤ Target 300-1200µS

Capacity of water to conduct an electrical current

- → Both modified by addition of balanced salt formulations
- Evaporation of water will increase both

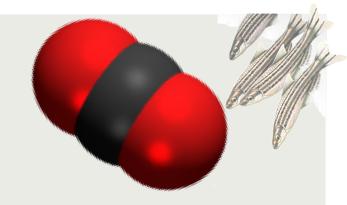
Salinity and Conductivity

- →Na⁺ are necessary for ammonium (NH₄⁺) excretion and ion regulatory function
- → High salt
 - Fresh water animals cannot excrete enough ions
- **Low salt**
 - Fresh water animals will fight to retain ions
- These processes have a high metabolic cost to the animals

Dissolved Oxygen

- **→ 100%** saturation @28°C = 7.8mg/L

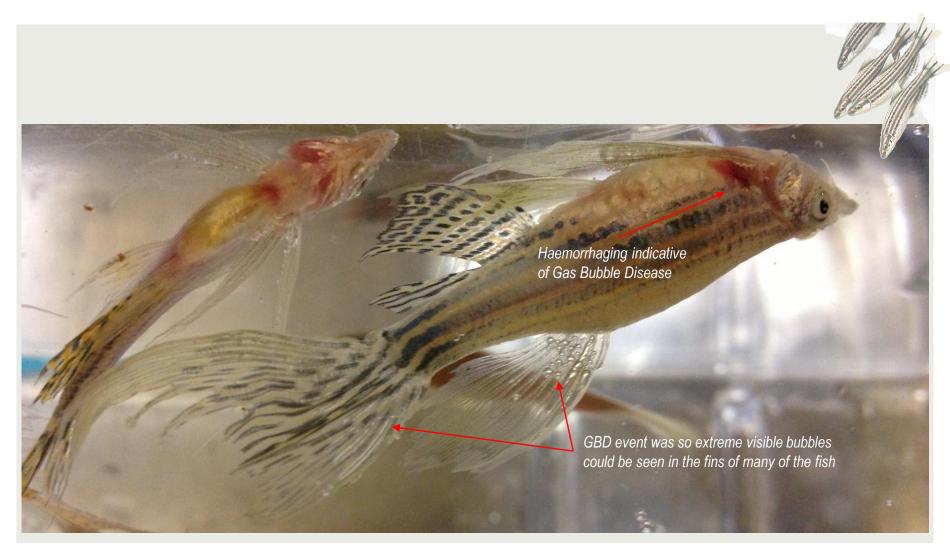
- → As water temperature increases the maximum DO saturation level decreases
- Can be modified by the use of mechanical aeration devises, degassing towers, trickle filters, or by the introduction of oxygen gas
 - >100% saturation can be dangerous
 - ➤ Different than total gas pressure (TGP)


Dissolved Oxygen

- **Saturation** >100%
 - Hyperoxia (delicate to manage)
 - Indicator of Gas Bubble Disease (GBD)
- → Hyperoxia
 - ₩ Used to manage densely populated, docile species
 - Respiration decreases (CO₂ is retained)
 - ➤ Kidneys retain HCO₃- to balance blood pH

Carbon Dioxide

- → Target < 5mg/L
 </p>
- → High CO₂ causes nephrocalcinosis
- ✓ Increasing CO₂ reduces pH
 - \rightarrow \downarrow NH_3 toxicity, \uparrow heavy metal toxicity
- Tested and recorded infrequently
- Can be reduced by use of degassing towers, packed columns, trickle filters, etc


Total Gas Pressure

5th Annual International Zebrafish Husbandry Course

- When the total pressure of all the gases in the water exceeds ambient atmospheric pressure at the water surface, supersaturation exists
- The effect of excessive supersaturation on fish has been well documented, and if supersaturation exceeds the established safe levels, massive fish kills can occur

Gas Bubble Disease

Gas Bubble Disease

Culture Condition Guidelines

5th Annual International Zebrafish Husbandry Course

→ Alkalinity: 50-150 mg/L

→ Hardness: 80-300+ mg/L

⇒pH: 6.0-8.0

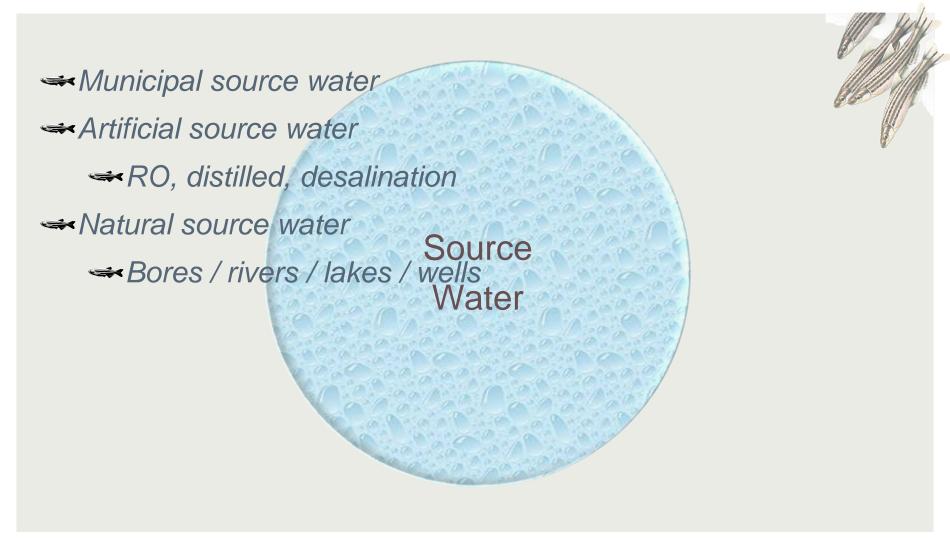
Salinity: 0.5 -2g/L(ppt)

Conductivity: 300-1500μS

< 0.02mg/L

Arr Nitrite: (NO₂⁻): < 1mg/L

Arr Nitrate: (NO₃-): < 50mg/L


→ Chlorine: 0mg/L

 \rightarrow DO₂: > 6 mg/L or > 80 % saturation

<CO₂: < 5mg/L

→ Un-ionized ammonia: (NH₃):

Soutcellingtellater Quality

Municipal Supply Water

Benefits	Limitations
Availability	Government regulated quality
Cheap	Limited pathogen control
Conditioning optional for culture use	Limited control over culture condition
Minimal waste volumes	Requires pre-treatment Activated Carbon – Chlorine/Chloramine/Cu ²⁺

Chlorine and Chloramine

5th Annual International Zebrafish Husbandry Course

≪Chloramine

- ➤ Target = 0 mg/L (ppm)
- Chloramine = Chlorine + Ammonia
- ➤ 0.01 ppm is acutely toxic to fish
- → Neutralise Sodium Thiosulfate or commercial products
 (Nov-Aqua®, AmQuel® or Safe®)
- Remove filtration using activated carbon

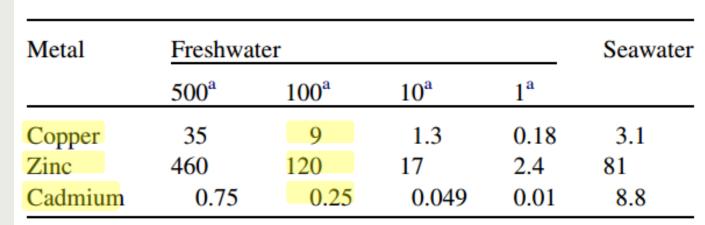
Chlorine and Chloramine

5th Annual International Zebrafish Husbandry Course

≪Chlorine

- ➤ Target = 0 mg/L (ppm)
- ➤ Zebrafish can tolerate low Cl₂ (0.5 -1ppm)
- ➤ Human smelling threshold is ~ 0.2 0.4 ppm
- → Neutralise or remove same as chloramine, or aeration over time (only for chlorine)
- Chronic exposure can damage skin, eyes, and gills
- Municipal water systems typically have 0.5 to 1.0 mg/L residual concentrations of chlorine present

Heavy Metals


- - Cadmium, copper, zinc, aluminium
- **Source** →
 - Corrosion of pipes and fittings
 - Poor quality feed stuffs
- → Dissolved metals are more toxic to fish in water of low alkalinity

Heavy Metals

5th Annual International Zebrafish Husbandry Course

→ Action level for heavy metal presence (µg/L)

^a Hardness (mg/L as CaCO₃).

Municipal Supply Water

5th Annual International Zebrafish Husbandry Course

→ Hard 60-220 mg/L CaCO₃

Conductivity 210-950µS/cm²

→ Heavy metals 5-110 μg/L Cu⁺⁺

→ Free Chlorine < 0.1-1.6mg/L
</p>

Urban Utilities, 2012

	14	H	
			7

Benefits	Limitations	
User specified product quality	Dedicated equipment	
Good pathogen control (clean water)	Higher operating cost (membrane replacement)	
Specific control over culture condition	Requires conditioning for culture use	
	↑ product quality = ↑ waste volumes	

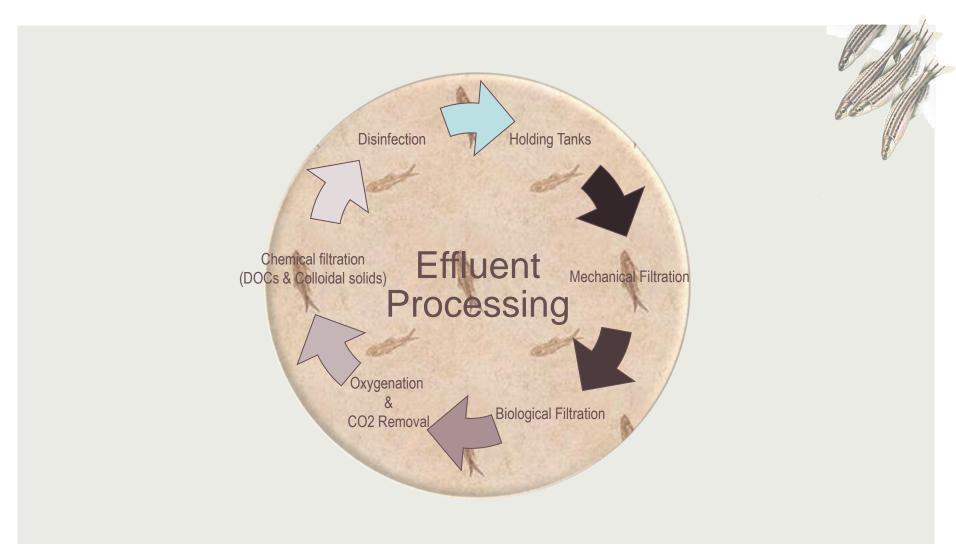
Class3 RO Supply Water

5th Annual International Zebrafish Husbandry Course

★Low alkalinity Acid pH ~6.3

Soft 0 mg/L CaCO₃

Salinity ~20 µS/cm² conductivity


→ Hardness Generators (↑pH + Ca+ cations)

Marine Sea Salt (↑µS + essential minerals)

→ Typically 7.5pH, >100mg/L CaCO₃, ~1,000 µS/cm²

BAST Celinting Waiter Supplify Systems Zebrafish Husbandry Course

Mechanical Filtration

- Remove large suspended debris
 - ---- Range : 10-100μm
- Allows for healthy biofilter growth
- Enhances UV efficacy

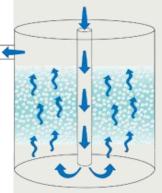
Mechanical Filtration

5th Annual International Zebrafish Husbandry Course

Welfare impact

- **Consumables?**
- Technical skill level for operation / maintenance?
- --- Automation?

Operating cost impact



Biological Filtration

5th Annual International Zebrafish Husbandry Course

- Under-gravel filters
- Fluidized beds
- Trickle filters (wet/dry filters)
- ➤ Bead filters
- Media varies by type, shape, size

Biological Filtration

5th Annual International Ze¹ish Husbandry Course

Provides substrate for bacterial growth

Bacteria break down metabolic waste products

Ammonia

- → Majority of waste nitrogen in fish is excreted as NH₃ through gills not as urea
- Requires positive gradient between fish and ambient water
- → As ambient water concentrations increase the outward flow of NH₃ decreases or may stop altogether
- Should be kept as low as possible − < 0.02 ppm
 </p>

pH effect on Ammonia

5th Annual International Zebrafish Husbandry Course

→ Total Ammonia Nitrogen (TAN) = NH₄⁺ + NH₃

$$TAN = 1.0ppm, NH_3 = 0.0234ppm$$

$$TAN = 10ppm, NH_3 = 0.0239ppm$$

http://www.hamzasreef.com/Contents/Calculators/FreeAmmonia.php

Biological Filter

5th Annual International Zebrafish Husbandry Course

- 2 types of aerobic microorganisms that colonize aquatic biofilers
 - Heterotrophic bacteria utilize dissolved organic compounds (DOCs)
 - Chemosynthetic bacteria utilize ammonia and nitrite as a food source

Heterotrophic bacteria grow 5X faster than Chemosynthetic bacteria

Nitrification

5th Annual International Zebrafish Husbandry Course

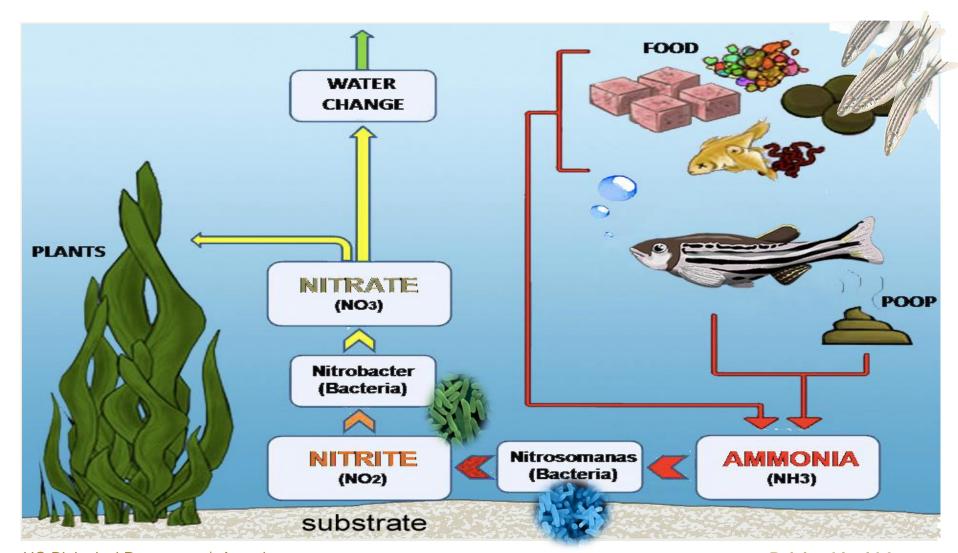
Toxic ammonia is converted to non-toxic nitrate

→ Nitrosomonas sp.

$$\sim 2 NH_3 + 3 O_2 \rightarrow 2 NO_2^- + 2 H_2O + 2 H_1^+$$

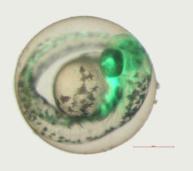
→ Nitrobacter, Nitrospina sp.

$$\sim 2 NO_2^- + 1 O_2 \rightarrow 2 NO_3^-$$


Chen et al, Aqua. Eng. 2006

Nitrification

- → Requires oxygen and alkalinty (\pH)
- → 1g TAN oxidised to nitrate nitrogen requires
 - **4.18g** of O₂
 - **7.07g** of CO₃⁻¹
 - ➤ 0.17g of bacteria biomass generated


Aquatic Nitrogen Cycle


Chemical Filtration

- → Dissolved wastes are more difficult to remove
- → 2 main options for chemical filtration
 - Activated Carbon
 - Foam fractionation (protein skimming)

Activated Carbon

- **≪**Removes
 - Chlorine and Copper ions
 - ➤ Dissolved Organic Compounds (DOC's)
 - **~** Colloidal solids

Protein Skimming

5th Annual International Zebrafish Husbandry Course

Works by adsorption

Hydrophobic pollutant molecules in the water bind to micro bubbles (of air or ozone) rising through a column

At the surface the bubbles form a foam and the waste is discharged to the foamate stream

Disinfection

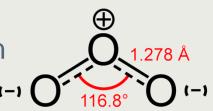
- Focussed at reducing microorganism populations
- 2 main options to consider
 - **₩** Ultraviolet irradiation
 - **→** Ozone
- Emerging Technology
 - **→** Quantum Disinfection

Ultraviolet irradiation

- → Bacteriostatic agent
- Effectiveness depends on flow rates, plumbing diameter and unit size/power and Water Quality
 - ➤ Presence of particulates decreases efficacy

- Critical: bulb must be replaced regularly and quartz sleeve cleaned and replaced when it becomes cloudy

Ozone


- *➡* Biocidal agent
- Superior disinfecting power to UV
- **₩** Why not commonly implemented?
 - Higher risk to animals
 - Limited by contact time

Ozone

- → Pale blue coloured gas
- Forms naturally from lightning/electrical sparks, with pungent odour at concentrations above 0.01mg/l
- → Highly reactive oxidizer
- - 10cm rainbow trout 96-h LC50 = 0.0093mg/l
 - Monitor both gaseous and aqueous presence

Ozone	UV
Constant disinfection dose	Dose ↓ over time
High capital	Low capital
Low cost consumable (electricity + silica)	High cost consumables (annual lamp replacement)
Safety monitors required (residues and leaks)	No residues or leaks
Moderate penetration (impurities consume O_3)	Weak penetration (impurities block UV)
Biocidal + additional effects	Bacteriostatic action only

Ozone in aquaculture

- Removal of fine and colloidal solids
 - ► 1-30 µm and 0.001-1 µm respectively
 - Microflocculation = clumping of the solids

- Removal of dissolved organic compounds (DOCs)
 - mon-biodegradable and accumulate
 - High levels stress fish and reduce nitrification efficiencies of the biofilter
 - Oxidises DOCs

Ozone in aquaculture

- → Biofilter supplementation (Removal of Nitrite)
 - ➤ Direct oxidation to nitrate
 - Reduces organic loading
- Disinfection (pathogen control)
 - Concentration and exposure time dependant

Ozone in aquaculture

5th Annual International Zebrafish Husbandry Course

- Rapid reaction rate (15sec half-life)
 - Few harmful reaction bi-products
 - ➤ Produces additional O₂ as a reaction end product

→ Drawbacks

- Harmful to humans and aquatic animals
 - Must be applied appropriately

Ozone application essentials

- → Gas generation
 - Corona discharge
 - **₩**UV generator
- - Ozone cone
 - → Protein skimmer

Ozone application essentials

5th Annual International Zebrafish Husbandry Course

$$*$$
k = C(mg/l) . T (min)

$$\Rightarrow$$
 IPNV − k = 2.25

45sec exposure at 3mg/l

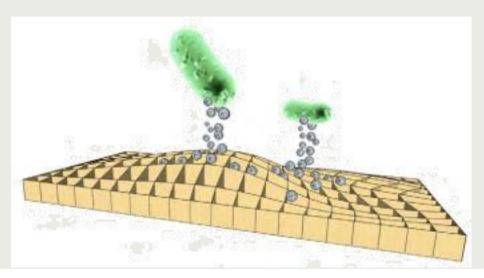
Activated carbon or UV

Ozone with zebrafish

- Enhance water quality processing
 - Reduce DOCs
 - Remove colloidal solids
 - Enhance UV efficacy
- → Best applied in large scale facilities
 - High effluent production

Silecte Quantum Disinfection

- ✓Is a cationic electron magnet
 - Utilizes elemental P-type semiconductor technology and solid-state theory
- → Discovered 2012 by Cristian Chris
 - Silica gel, TiO2(CI), Ag
 - ➤ No chemical leaching
 - ➤ Biocidal activity on contact
 - Log 6 kill in <0.01sec



Silecte Quantum Disinfection

5th Annual International Zebrafish Husbandry Course

→ How it works

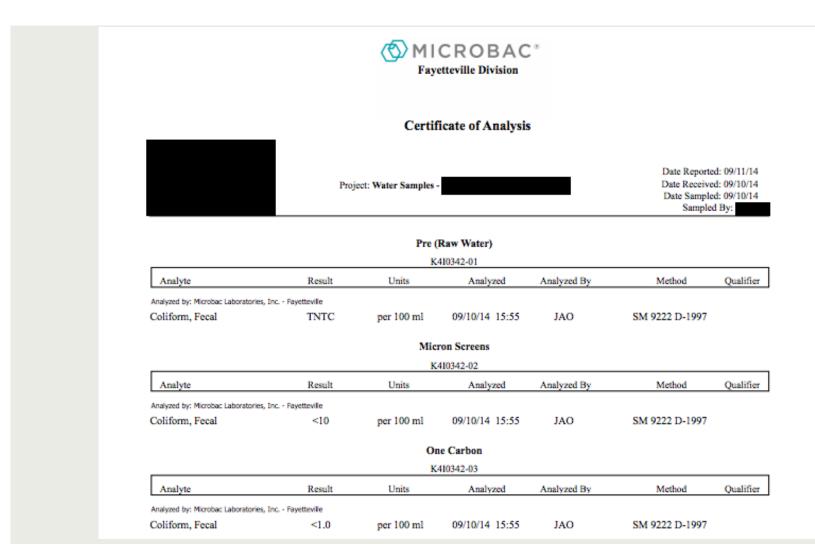
- Absence of valance electrons on outermost surface
- On contact, electrons are "zapped" from the microorganism

EPA Test Results

5th Annual International Zebrafish Husbandry Course

Silecte[™] Disinfection Media

Microorganism performance data sheet


Micro Organism (MO)	МО Туре	MO Reduction
Pseudomonas aeruginosa Escherichia coli Staphylococcus aureus Enterococcus hirae Legionella adelaidensis	Bacteria	Log 6
Candida albicans	Yeast	Log 6
Anabaena constricta	Algae	Log 5
MS2 Phage (ATCC 15597)	Virus	Log 4
Cryptosporidium	Protozoa	Log 2
Biological Resources Aquatics		Raising Liquid As

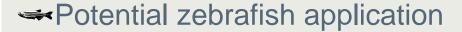
- ✓Island community (1,000 residents)
- Existing plant
 - Micron filter, Carbon clarifier, Chlorine dosing
 - Silecte added post carbon filter

5th Annual International Zebrafish Husbandry Course

⇒ Effluent process

30um disc filter, UV disinfection

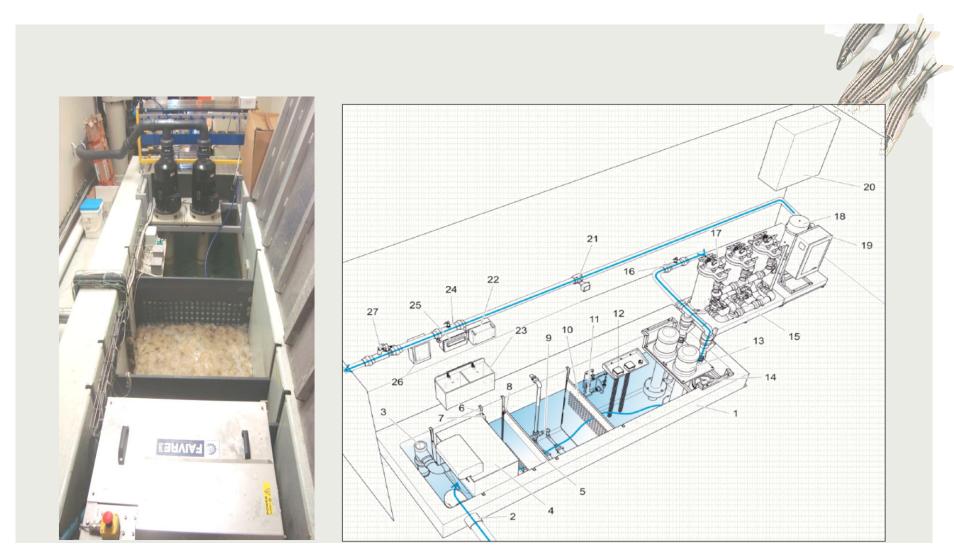
Silecte − 2x side stream application pre-UV

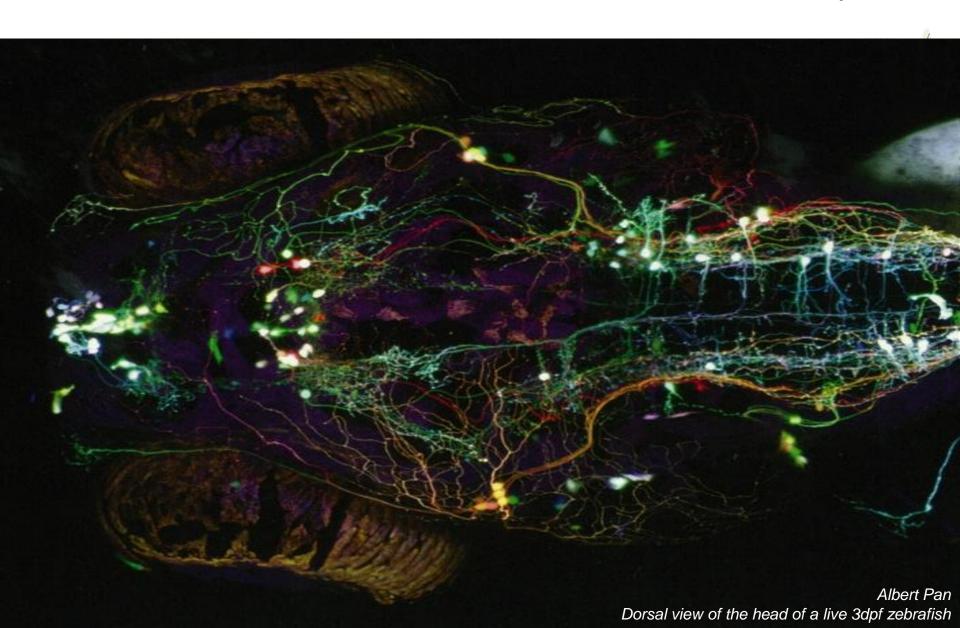


Parameter	Units	Date Analyzed	Site #1	Site #2
Fecal Coliform	col/100ml	12/4/13	2	10
Fecal Coliform	col/100ml	1/15/14	<1	<1
Fecal Coliform	col/100ml	3/5/14	<1	<1
Fecal Coliform	col/100ml	4/2/14	5	<1
Fecal Coliform	col/100ml	4/23/14	<1	<1
Fecal Coliform	col/100ml	4/29/14	<1	<1
Fecal Coliform	col/100ml	5/7/14	<1	<1
Fecal Coliform	col/100ml	10/22/14	<1	<1
Fecal Coliform	col/100ml	11/26/14	<1	<1

Silecte Quantum Disinfection

5th Annual International Zebrafish Husbandry Course


- ➤ Unequalled biocidal activity (on contact, <0.01sec)</p>
- No power required
- No chemicals added to water (vs Ozone)
- Cheap consumables (claiming 31% saving over UV)


Limitations

➤ Dependent on influent water quality

Effluent Processing Assembly

