

Jason Cockington Aquatics Manager UQ Biological Resources

Intensive Aquaculture

- → Pond culture
- **★Long lines**
- **⇒** Flow through systems
- → Recirculating Aquaculture Systems (RAS)

Cage culture in dams

Mussel longline culture

Deakin University - Aquaculture Research Centre

Victorian fish hatchery raceways

RAS Aquaria

- High density stocking
- Self-contained production systems
- Greater control over the culture environment
- Increased bio-security
- Minimal water exchange ~10% system volume/24hrs

RAS Aquaria

- Capital outlay
- ➤ Disease containment
- Mechanical failure, oxygen depletion, toxin levels
- Skilled labour required to maintain, monitoring often intensified
- **₩** Water Quality

Water Quality is Key Stone

- Aquariums are complex dynamic biological systems affected by multiple variable interactions
- Water quality is critical to the successful operation of any aquaria holding system
- Changes can range from seconds to minutes, minutes to hours, and days to months
- Consistent condition and routine monitoring is required

Water Quality

- Most current standards are based on
 - ₩ USEPA Red Book (1976)
 - > What has been done traditionally
 - ₩ What appears successful in the laboratory setting
- Minimal numbers of controlled studies have been done to evaluate what parameters are best for captive zebrafish

Ammonia Example

<0.02mg/L NH₃ for freshwater life

→ Best et al. (2010) reported

→ 0.18mg/L NH₃ with no obvious detrimental effects to 9dpf zebrafish alevin

ZEBRAFISH Volume 7, Number 3, 2010 © Mary Ann Liebert, Inc. DOI: 10.1089/zeb.2010.0667

> A Novel Method for Rearing First-Feeding Larval Zebrafish: Polyculture with Type L Saltwater Rotifers (*Brachionus plicatilis*)

Jason Best, Isaac Adatto, Jason Cockington, Althea James, and Christian Lawrence

Take home message

- - Species specific
 - Life stage specific
- More controlled experimentation is required to identify optimal rearing conditions

Controlling Water Quality

- **₩** Culture
- **➤** Source
- Effluent Processing

- Culture condition
- Operation processes

Colt, Aqua. Eng. 2006

≈ 6.0-9.5

→ *Target* = 7.5-8

→ Measurement of basic, acidic, or neutral qualities of a solution

Acid Neutral Alkaline

Acid Neutral Alkaline

Acid Neutral Alkaline

Acid Neutral Alkaline

Output

Description

Description

Acid Neutral Alkaline

Output

Description

D

→Will fluctuate in rec

Respiration

™ Nitrification

Acid Neutral Alkaline

pH:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

battery acid (<1) | coffe (5.0) | normal soap (9-10) |

orange juice (3-4) milk (6.5) | bleach (12.5) |

distilled water (7.0)

http://www.all-about-ph.com/ph-scale.html

- → pH changes must be done gradually
- → A drop from 7 to 6 represents the water becoming 10 times more acidic

- → High pH causes:
 - increases in concentration of NH₃ (most toxic form)
- → Low pH causes:
 - decreases in activity of nitrifying bacteria
 - increases toxicity of heavy metals

- → Respiration effect
 - ► Increased CO₂ will decrease pH
 - ➤ Depending on alkalinity, can ↓NH₃:NH₄+ in TAN
- → Nitrification effect
 - Nitrification consumes alkalinity, decreasing pH
 - NH₃ toxicity decreases with decreasing pH
 - Nitrifying bacteria have reduced growth and activity at pH levels below 6.4

- → Buffering pH often necessary
 - ➤ Daily Sodium Bicarbonate (NaHCO₃)
 - ➤ Periodic Coral or Oyster shells (CaCO₃)
 - Must be done slowly to avoid rapid and excessive pH level changes

Important to understand water hardness and alkalinity before adjusting pH

Hardness

→ 75-200ppm CaCO₃

➤ Target >100ppm

≈ cations - Ca⁺⁺ + Mg⁺⁺

→ Alkalintiy / Carbonate Hardness (KH)

 \Rightarrow anions - $HCO_3^- + CO_3^-$

General Hardness

- The sum concentrations of calcium, magnesium, and other divalent cations
- Effected by the geology of the watershed of the source
- Freshwater fish blood ions are higher than the water
- - > Decreases osmoregulatory stress
 - Decreases the toxicity of dissolved metals like copper and zinc

Carbonate Hardness

- Sum of bicarbonate (HCO₃⁻) and carbonate (CO₃⁻⁻) anions in the water
- → Reflects the buffering capacity of the water or the stability of pH
- → Dissolved metals (copper, zinc, and aluminium) are more toxic to fish in water of low alkalinity

Salinity and Conductivity

№ 0.2-2.0ppt

➤ Target 0.25-0.75ppt

Salinity measures salts of the alkali metals or magnesium

Conductivity Tolerance

Can both be modified by addition of balanced salt formulations

≈ 300-4000µS/cm²

► Target 300-1200μS

Capacity of water to conduct an electrical current

Salinity and Conductivity

- →Na⁺ are necessary for ammonium (NH₄⁺) excretion and ion regulatory function
- → High salt
 - Fresh water animals cannot excrete enough ions
- **⊸Low salt**
 - Fresh water animals will fight to retain ions
- → These processes have a high metabolic cost to the animals

Dissolved Oxygen

- Can be modified by the use of mechanical aeration devises, degassing towers, trickle filters, or by the introduction of oxygen gas
 - >100% saturation can be dangerous
 - ➤ Different than total gas pressure (TGP)

Dissolved Oxygen

- ➤ Hyperoxia (delicate to manage)
- Indicator of Gas Bubble Disease (GBD)
- → Hyperoxia
 - **₩** Used to manage densely populated, docile species
 - Respiration decreases (CO₂ is retained)
 - **™** Kidneys retain HCO₃⁻ to balance blood pH

Carbon Dioxide

- → Target < 5mg/L
 </p>
- → High CO₂ causes nephrocalcinosis
- ✓ Increasing CO₂ reduces pH
 - \rightarrow \downarrow NH_3 toxicity, \uparrow heavy metal toxicity
- Tested and recorded infrequently
- Can be reduced by use of degassing towers, packed columns, trickle filters, etc

Colt, Aqua. Eng. 2006

Total Gas Pressure

- When the total pressure of all the gases in the water exceeds the ambient atmospheric pressure at the water surface, supersaturation exists
- The effect of excessive supersaturation on fish has been well documented, and if supersaturation exceeds the established safe levels, massive fish kills can occur

Gas Bubble Disease

Gas Bubble Disease

Chlorine and Chloramine

- **→** Chloramine
 - ➤ Target = 0 mg/L (ppm)
 - Chloramine = Chlorine + Ammonia
 - ➤ 0.01 ppm is acutely toxic to fish
- → Neutralise commercial products (Nov-Aqua® , AmQuel® or Safe®), or Sodium Thiosulfate
- Remove filtration using activated carbon

Chlorine and Chloramine

→Chlorine

- ➤ Target = 0 mg/L (ppm)
- ➤ Zebrafish can tolerate low Cl₂ (0.5 -1ppm)
- ➤ Human smelling threshold is ~ 0.2 0.4 ppm
- → Neutralise or remove same as chloramine, or aeration over time (only for chlorine)
- Chronic exposure can damage skin, eyes, and gills
- Municipal water systems typically have 0.5 to 1.0 mg/L residual concentrations of chlorine present

Culture Condition Guidelines

- ★Temperature: 18 24 (24-28°C)
- → Alkalinity: 50-150 mg/L
- → Hardness: 80-300+ mg/L
- **⇒**pH: 6.0-8.0
- Salinity: 0.5 -1g/L(ppt)
- ArrConductivity: 300-1500 μ S ArrCO₂: < 5mg/L
- ✓ Un-ionized ammonia:

 (NH_3) : < 0.02mg/L

Arr Nitrite: (NO₂-): < 1mg/L

ightharpoonupNitrate: (NO₃-): < 50mg/L

→ Chlorine: 0mg/L

 \rightarrow DO₂: > 6 mg/L or > 80 % saturation

Soutce Ningte Vater Quality

- Municipal source water
- Artificial source water
 - RO, distilled, desalination
- → Natural source water

 Source

 Natural source water

 Natural
 - Bores / rivers Mater / wells

Municipal Supply Water

Benefits	Limitations	
Availability	Government regulated quality	
Cheap	Limited pathogen control	
Conditioning optional for culture use	Limited control over culture condition	
Minimal waste volumes	Requires pre-treatment Activated Carbon – Chlorine/Chloramine/Cu ²⁺	

Heavy Metals

Cadmium, copper, zinc, aluminium

Source

Corrosion of pipes and fittings

Poor quality feed stuffs

Dissolved metals are more toxic to fish in water of low alkalinity

Heavy Metals

→ Action level for heavy metal presence (µg/L)

Metal	Freshwater				Seawater
	500 ^a	100 ^a	10 ^a	1 ^a	
Copper	35	9	1.3	0.18	3.1
Zinc	460	120	17	2.4	81
Cadmium	0.75	0.25	0.049	0.01	8.8

^a Hardness (mg/L as CaCO₃).

Colt, Aqua. Eng. 2006

Municipal Supply Water

→ 2012 Brisbane Water Conditions

→ Hard 60-220 mg/L CaCO₃

→ Conductivity 210-950µS/cm²

→ Heavy metals 5-110 μg/L Cu⁺⁺

→ FreeChlorine < 0.1-1.6mg/L
</p>

RO Supply Water

Benefits	Limitations
User specified product quality	Dedicated equipment
Good pathogen control (clean water)	Higher operating cost (membrane replacement)
Specific control over culture condition	Requires conditioning for culture use
	↑ product quality = ↑ waste volumes

Class3 RO Supply Water

Soft 0mg/L CaCO₃

Requires conditioning for culture use

→ Hardness Generators (↑pH + Ca+ cations)

Marine Sea Salt (↑µS + essential minerals)

Typically 7.5pH, >100mg/L CaCO₃, ~400 µS/cm²

RAStrockintrgs Waiter Supplifyt Systems (CLS)

UQ Biological Resources | Aquatics

Mechanical Filtration

Mechanical Filtration

Remove large suspended debris

---- Range : 10-100μm

- Allows for healthy biofilter growth

Enhances UV efficacy

Mechanical Filtration

- - Removes or Isolates waste?
 - Welfare impact
 - **►** Consumables?
 - Technical skill level for operation / maintenance?
 - **→** Automation?
 - Operating cost impact

UQ Biological Resources | Aquatics

Mechanical Filtration

Biological Filtration

→ Includes

- Under-gravel filters
- Fluidized beds
- Trickle filters (wet/dry filters)
- ➤ Bead filters
- Media varies by type, shape, size

2 nd Annual International Zebrafish Husbandry Course

Biological Filtration

Bacteria break down metabolic waste products

Ammonia

- **→** Total Ammonia Nitrogen (TAN) = NH₄⁺ + NH₃
 - TAN species ratio influenced by pH
- → Majority of waste nitrogen in fish is excreted as NH₃ through gills not as urea
- → Requires positive gradient between fish and ambient water
- → As ambient water concentrations increase the outward flow of NH₃ decreases or may stop altogether
- Should be kept as low as possible − 0 ppm

Biological Filter

- Heterotrophic bacteria utilize dissolved organic compounds (DOCs)
- Chemosynthetic bacteria utilize ammonia and nitrite as a food source

Heterotrophic bacteria grow 5X faster than Chemosynthetic bacteria

Nitrification

Toxic ammonia is converted to non-toxic nitrate

→ Nitrosomonas sp.

$$\sim 2 NH_3 + 3 O_2 \rightarrow 2 NO_2^- + 2 H_2 O + 2 H^+$$

→ Nitrobacter, Nitrospina sp.

$$\sim 2 NO_2^- + 1 O_2 \rightarrow 2 NO_3^-$$

Chen et al, Aqua. Eng. 2006

Nitrification

- → Requires oxygen and alkalinty (\pH)
- → 1g TAN oxidised to nitrate nitrogen requires
 - \sim 4.18g of O_2
 - **7.07g** of CO₃⁻
 - → 0.17g of bacteria biomass generated

Chen et al, Aqua. Eng. 2006

Chemical Filtration

- → Dissolved wastes are more difficult to remove
- → 2 main options for chemical filtration
 - **→** Activated Carbon
 - Foam fractionation (protein skimming)

Activated Carbon

- Works by adsorption
 - pollutant molecules in the water are trapped inside the pore structure of the carbon substrate
- **≪**Removes
 - Chlorine and Copper ions
 - ➤ Dissolved Organic Compounds (DOC's)
 - Colloidal solids

Protein Skimming

→ Works by adsorption

- Hydrophobic pollutant molecules in the water bind to micro bubbles (of air or ozone) rising through a column
- At the surface the bubbles form a foam and the waste is discharged to the foamate stream

Disinfection

- Focussed at reducing microorganism populations
- → 2 main options to consider
 - **₩** Ultraviolet irradiation
 - **₩** Ozone

Ultraviolet irradiation

- → Effectiveness depends on flow rates, plumbing diameter and unit size/power and Water Quality
 - Presence of particulates decreases efficacy

- Critical: bulb must be replaced regularly and quartz sleeve cleaned and replaced when it becomes cloudy

Ozone

- Higher risk to animals
- Limited by contact time

Effluent Processing Assembly

Questions?

