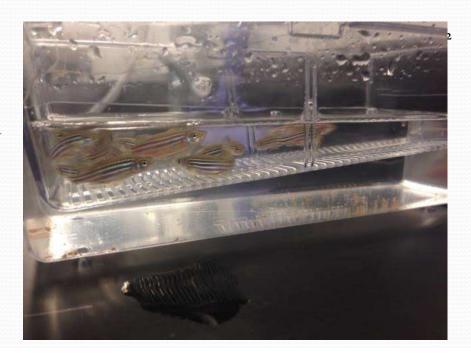


Non-Infectious Diseases


Dr. Christine Lieggi, DVM, DACLAM
Memorial Sloan-Kettering Cancer Center & Weill Cornell Medical College
5th Annual International Zebrafish Husbandry Course
Buguggiate, Italy 2016

Water Quality

- Lack of oxygen
 - Respiratory distress

- Inadequate hardness
 - Embryo/larval mortality

Gas Supersaturation

- Partial pressure of dissolved gasses in balance with PP of same gases in air (N2, O2, AR, CO2)
- Air leak in piping suction side of pump*
- Low water levels causing a vortex in sump
- Air injection into the system
- Gas dissolved in the water in excess of equilibrium results in supersaturation
 - Primarily N2
- Excess gas will be released from solution

Gas Bubble Disease

 Fish tissues become supersaturated with gasses, which are released as bubbles causing tissue

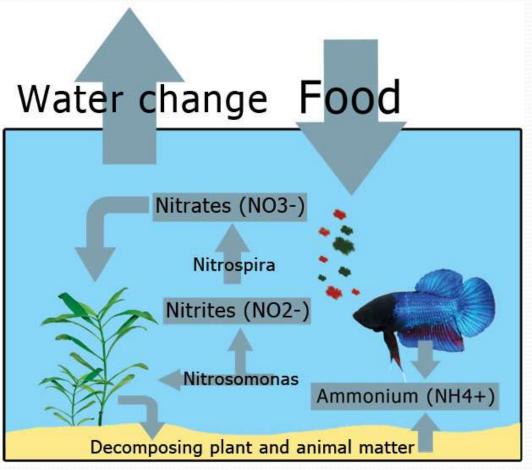
damage

Bubbles

Buoyancy problems

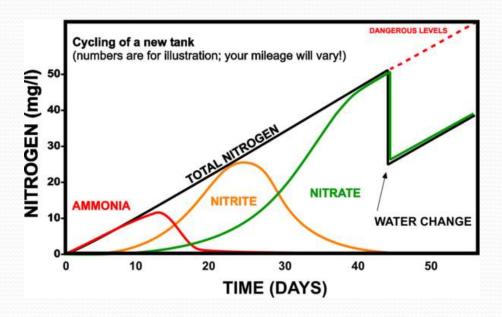
Hemorrhage

Death


DX: Fish on low or no water flow are ok Check TDG

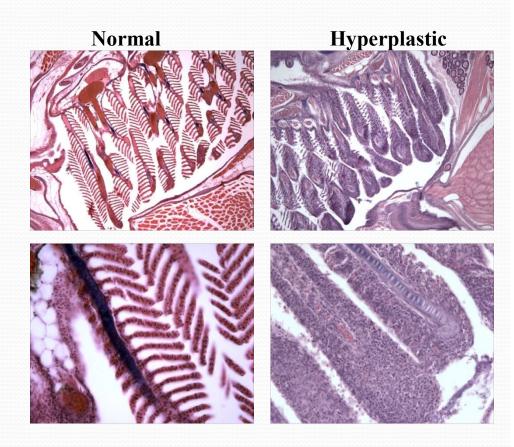
GBD Treatment

- Stop the pumps!
 - Stop feeding
 - Turn off UV light
- Find the problem
- Maintain water quality without water flow
- Susceptible to secondary infections, negative impact on breeding*


Nitrogenous Waste Toxicity

http://www.fnzas.org.nz/wpcontent/uploads/2011/05/NitrogenCycle3.jpg

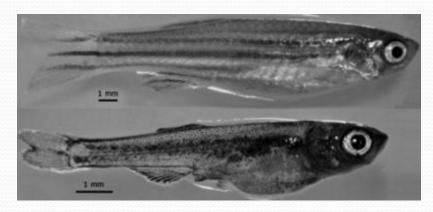
Nitrogenous Waste Toxicity


- Ammonia (NH_3) : > 0.02 ppm (mg/L)
 - pH/temp impact
- Nitrite: > 0.5-1.0 ppm
- Nitrate: > 200 ppm
- Diagnosis: Water sample

https://www.theaquariumwiki.com/Beginning_Fishkeeping-Cycling_Your_Tank

Ammonia & Nitrite Toxicity

- Ammonia and Urea transporters heavily concentrated in gills
- Physiologic response is age dependent
 - Embryos and Larva more tolerant
- Toxicity influenced by other water parameters



Acute Toxicity

- Behavioral changes
- Respiratory distress
 - Gasping at water surface
 - Lethargy
 - Hemorrhage
- Death

Nitrate > 400ppm; Learmonth 2015

Sub-acute/Chronic exposure

- Sub-lethal levels
- Reduced growth
- Decreased breeding success
- Stress
 - Immunosuppression
 - Disease (bacterial, fungal, etc.)
 - Death

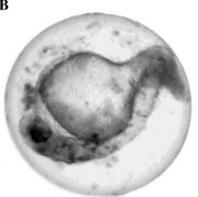
Courtesy of George Sanders

Treatment

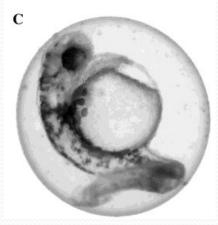
- Treatment: Correct values GRADUALLY!
- Improve water flow- slowly! Watch pH!
- Reduce fish densities
- Stop/decrease feedings

PREVENT IT!

- Add fish to systems gradually
- Don't over feed
- Regular water exchange


Other Toxins

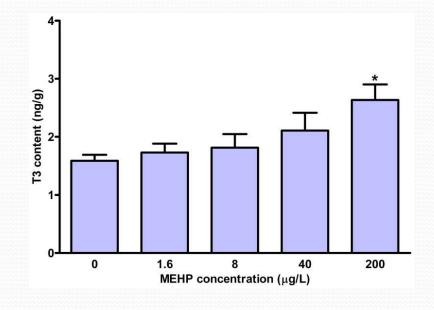
- Heavy Metals
 - Copper: Delayed hatching & neurologic signs
 - Lead: Neurotoxicity
- Medications
 - Sensitive- tox study model!


Control

Fenbendazole

Febantel

Carlssona, Gunnar, et al


Chemicals/Toxins

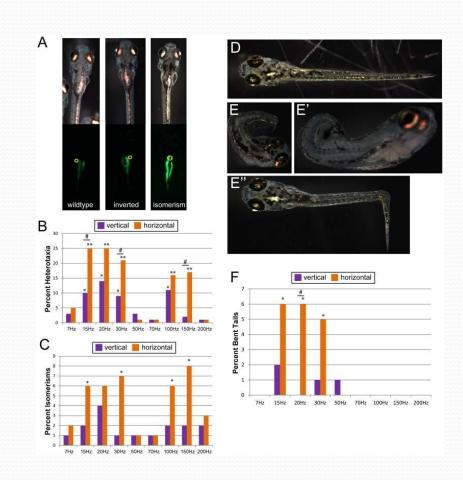
- Chlorine
 - Very sensitive
- Cleaning products
- Gloves
 - Toxicity to latex demonstrated
 - Avoid powdered gloves

Plasticizers

- Plasticizers
 - Fry are much more sensitive
 - Caution with new systems and enrichment
 - Thyroid endocrine toxicity
 - Disturbance of spermatogenesis
 - Induce genetic aberrations

Lighting

- Light
 - Altered rhythms impact activity and spawning
 - Routine monitoring of room lighting
 - Exit signs
 - Control group spawned twice as many embryos compared to those housed in front of a red EXIT sign
 - Green EXIT sign showed no difference
 - Other light producing equipment



Vibrations

- Low level vibrations
 - Altered left-right patterning and tail morphogenesis
- Continuous vibrations
 - Lowered total activity levels
- Death in other aquatic species

Is this a problem?

latrogenic

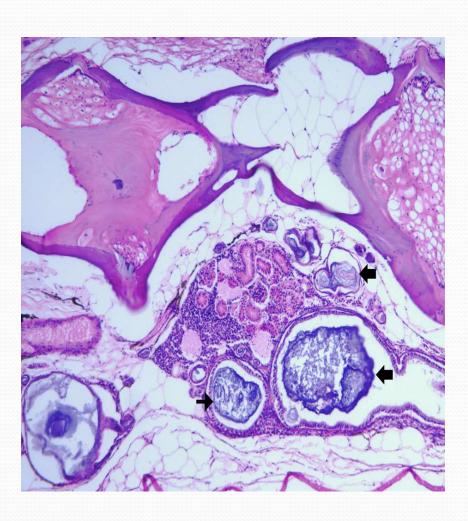
- Handling
 - Net catching
 - Egg stripping
 - Dermal abrasions
- Enrichment?
- Experimental
 - Compound administration
 - Behavioral testing devices

Breeding Practices

- Eggs develop in females regardless of male presence
 - Food availability
 - Water quality

Egg-Associated Inflammation (EAI)

- Likely caused by egg retention
 - Usually present with abdominal distention
 - Incidence seems to increase with age
- Sequela
 - Secondary Infections*
 - Aggressive fibroplasia
 - Poor breeder


Egg-Associated Inflammation

- Prevention:
 - Timely spawning of females
 - House males and females together
 - Retire fish appropriately

Nephrocalcinosis

- Subclinical
- High CO₂
 - Associated with crowding
- Use of calcium carbonate
 - Recommended buffering with sodium bicarbonate
- Excessive dietary Ca
- Dietary Magnesium
- Selenium toxicity

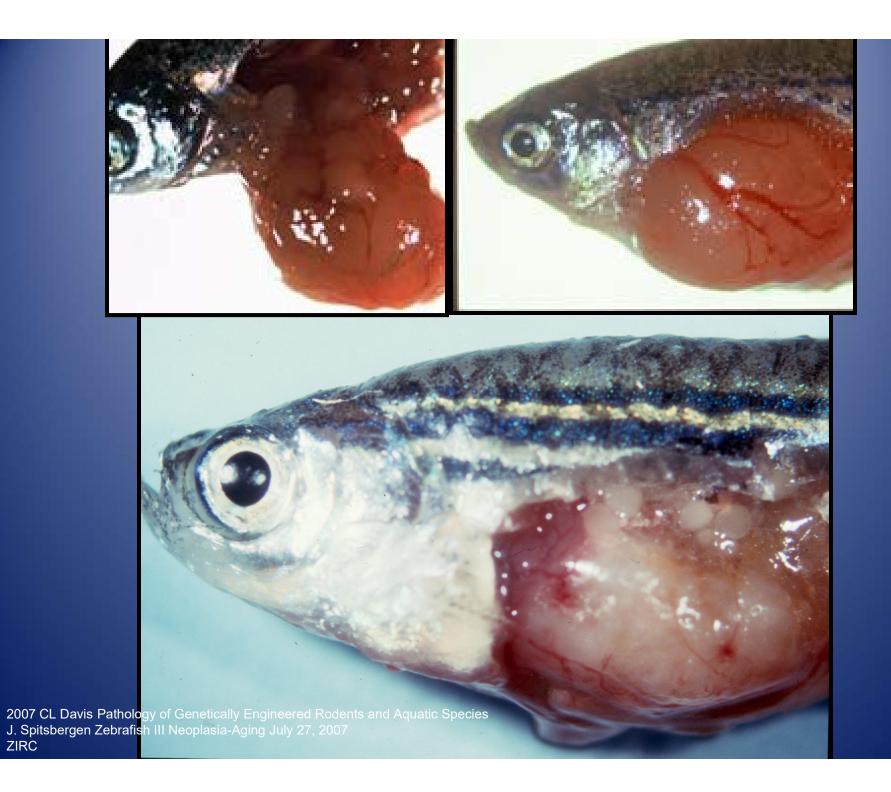
Hepatic Megalocytosis

- Enlargement of hepatocyte nuclei and cytoplasm
- Not associated with progression to neoplasia
- Thought to be caused by hepatotoxicants
 - Dietary
 - Algal, etc.
 - Carcinogens
 - Unknown direct cause
- Cells are polyploid (failure of cell division)

Neoplastic Disease

- Reported in nearly every organ
 - Most cell types
- Liver most common target organ for carcinogens*
 - Liver grows throughout life
- Reproductive organs
- Ultimobranchial neoplasia
- Brain, eye, spinal cord
- Not so common:
 - Epithelial
 - Melanoma
 - Liposarcoma
 - Heamtopoeitic

Seminoma


- Most commonly reported spontaneous neoplasm of Zebrafish*
- Can become extremely large (up to 50% of body mass)
- Most are extremely well-differentiated
- Not reported to metastasize

Hepatic Neoplasia

- Hepatocellular adenoma or carcinoma have been the most commonly observed
 - +/- carcinogen exposure
- Cholangiocarcinoma and mixed also seen
- Soft white to tan masses that may be single or multiple
 - May bulge above the surface

THE END

References

- Adatto I¹, Krug L¹, Zon LI^{1,2}. The Red Light District and Its Effects on Zebrafish Reproduction. Zebrafish. 2016 Jun;13(3):226-9. doi: 10.1089/zeb.2015.1228. Epub 2016 Mar 15.
- Feldman B, Tuchman M, Caldovic L. A zebrafish model of hyperammonemia. *Molecular genetics and metabolism*. 2014;113(0):142-147. doi:10.1016/j.ymgme.2014.07.001.
- <u>Kopp R¹</u>, <u>Legler J²</u>, <u>Legradi J³</u>. Alterations in locomotor activity of feeding zebrafish larvae as a consequence of exposure to different environmental factors. <u>Environ Sci Pollut Res Int.</u> 2016 Apr 27. [Epub ahead of print]
- <u>Learmonth C</u>¹, <u>Carvalho AP</u>^{1,2}.. <u>Zebrafish.</u> 2015 Aug;12(4):305-11. Epub 2015 May 21. **Acute and Chronic Toxicity of Nitrate** to Early Life Stages of Zebrafish--Setting Nitrate Safety Levels for Zebrafish Rearing.
- Marvin H. Braun, Shelby L. Steele, Steve F. Perry. The responses of zebrafish (*Danio rerio*) to high external ammonia and urea transporter inhibition: nitrogen excretion and expression of rhesus glycoproteins and urea transporter proteins. Journal of Experimental Biology 2009 212: 3846-3856; . doi: 10.1242/jeb.034157
- <u>McLeish JA</u>¹, <u>Chico TJ</u>, <u>Taylor HB</u>, <u>Tucker C</u>, <u>Donaldson K</u>, <u>Brown SB</u>. Skin exposure to micro- and nano-particles can cause haemostasis in zebrafish larvae. <u>Thromb Haemost.</u> 2010 Apr;103(4):797-807. doi: 10.1160/TH09-06-0413. Epub 2010 Feb 19.
- Oehlmann J, Schulte-Oehlmann U, Kloas W, et al. A critical analysis of the biological impacts of plasticizers on wildlife. *Philosophical Transactions of the Royal Society B: Biological Sciences*. 2009;364(1526):2047-2062. doi:10.1098/rstb.2008.0242.
- Vandenberg LN, Stevenson C, Levin M. Low Frequency Vibrations Induce Malformations in Two Aquatic Species in a Frequency-, Waveform-, and Direction-Specific Manner. Gibert Y, ed. *PLoS ONE*. 2012;7(12):e51473. doi:10.1371/journal.pone.0051473.
- Zhai W, Huang Z, Chen L, Feng C, Li B, Li T. Thyroid Endocrine Disruption in Zebrafish Larvae after Exposure to Mono-(2-Ethylhexyl) Phthalate (MEHP). Vanacker J-M, ed. *PLoS ONE*. 2014;9(3):e92465. doi:10.1371/journal.pone.0092465.