Infectious Diseases of Laboratory Zebrafish

Dr. Christine Lieggi, DVM, DACLAM
Memorial Sloan-Kettering Cancer Center and
Weill Cornell Medical College
5th Annual International Zebrafish Husbandry Course

Expression of Disease

- Stress (Poor water quality, handling, overcrowding, tank agression)
 - More susceptible to infection
 - Earlier onset of disease
 - Increased severity of infection
- Health status
 - Nutrition
 - Other diseases

Expression of Disease

- Experimental Treatments
 - Irradiation
 - Medications
 - Handling
- Genetic background
 - Modulate response to disease
 - Immune status

What's Common?

Microsporidiosis

- Microsporidium
 - Spore forming, eukaryotic, obligate intracellular parasitic fungi
 - Infect insects, crustaceans, fish, and mammals
 - Over 50% of microsporidia genera infect aquatic organisms

- Pseudoloma neurophilia
 - 1st reports from petstore zebrafish (1980s)
 - At least 7 susceptible fish species
- Pleistophora hyphessobryconis
 - Neon-tetra disease
 - 1st reported in laboratory zebrafish 2010
 - At least 20 susceptible fish species

Pseudoloma neurophilia*

From: Verification of Intraovum Transmission of a Microsporidium of Vertebrates: Pseudoloma neurophilia Infecting the Zebrafish, Danio rerio; Justin
L. Sanders, Virginia Watral, Keri Clarkson, Michael L. Kent

- A. 12 h: Spores in intestinal lumen
- B. 36 h: Proliferative stages in pharyngeal epithelium
- C. 48 h: Single proliferative stage in intestinal epithelium
- D. 72 h: Multiple proliferative stages in intestinal epithelium

Results of Infection

Foci of inflammation associated with the spores

- Ovarian tissue
- Hindbrain
- Spinal cord
- Extensive infection
 - Other tissues

Clinical Signs

- None
- Variable Emaciation
- Spinal deformity
- Death
- TL strains more likely to show clinical signs
- Male more commonly infected

Courtesy of ZIRC

Subclinical Signs

- Decreased fertility
- Behavioral changes
- Experimental variables

Pleistophora hyphessobryconis

- Primary host is... neon tetra (Paracheirodon innesi)
 - Broad host specificity
 - Caution with shared facilities
- Ingestion
 - Cannibalism
 - Exposure to spores
- Vertical?
 - Not yet proven

Results of Infection and Clinical Signs

- Large numbers of spores in skeletal muscle
 - Inflammation from released spores
- Clinical Signs
 - None
 - Sluggish, bloated
 - Spinal curvatures

Sanders, JL, 2010

- Multifocal to coalescing white-gay, slightly raised regions
- Morbidity/Mortality

Treatment of Microsporidian Infections

None!!!

Management Strategies

- Quarantine system with embryo sanitization
 - Not 100% effective
 - Doesn't capture vertical transmission
- Remove sick and old fish
- Practice safe spawning
 - Screen brood fish (replace +)
 - Embryo disinfection for brood stock
 - Dump spawn water down drain
- Minimize stress

Management Strategies

- One net/tank
- Effective UV sanitization
 - 45-50,000 μWsec/cm²
- Disinfect equipment
 - 100 ppm bleach x 10 min kills 99% spores
 - Wesocodyne Soak (75 ppm) x 10 min
 - Wescodyne Spray (175 ppm) x 10 min

Bacteria

Opportunistic: Cause disease in compromised host

Pathogenic: Cause disease in healthy individuals

Many are zoonotic!

Opportunistic Bacteria

- Normal bacteria species that may cause disease
 - Aeromonas hydrophila
 - Staph spp.
- Typically secondary to water quality problems
- Stress
 - Stocking density
 - Handling
 - Shipping

Clinical signs that may be associated

with bacterial infections

Other Bacteria

- Pathogenicity may be dose dependent
- Flavobacterium columnare
- Vibrio spp.
- Staphlococcus spp.

Picture courtesy of J. Cockington

Edwardsiella ictaluri

Primary, obligate pathogen

 Causative agent of Enteric Septicemia of Catfish (ESC)

Transmitted from fish to fish by close contact,
 via the water, by fecal shedding, or orally

Edwardsiella ictaluri

- Acute mortality over 1 2 weeks
 - 280 deaths within 10 days
- First signs within 24hours of arrival possible
- Treatment
 - Not proven curative

HAWKE ET AL. 2014

Quarantine!

General Treatment Recommendations

Experimental history?

- Check water quality
 - Best growth < 7.2; alkalinity???</p>

Picture courtesy of J. Cockington

- Embryo treatment
 - 25-50 ppm bleach for most gram (-)

Treat or Cull?

- Case by case basis
 - Depopulate

- Antibiotic treatment generally not recommended *
 - Culture/sensitivity
 - Possible adverse effects of medications

Treatment Considerations

- Treat off-system or flow- through
 - Consider impact on biofilter
- Before treatment consider......
- Pilot studies
- Potential impact on research
- Potential impact on reproduction

Mycobacteriosis

- Primarily through intestinal tract
 - Shedding from infected fish
 - Fish tissue, debris, food
- Live feed reservoirs
- Found in biofilms
- Contaminated equipment/personnel

Paramecium caudatum enhances transmission and infectivity of Mycobacterium marinum and M. chelonae in zebrafish Danio rerio

Tracy S. Peterson^{1,*}, Jayde A. Ferguson², Virginia G. Watral¹, K. Nadine Mutoji³, Don G. Ennis⁴, Michael L. Kent^{1,5}

Does Species Matter?

TU may be more susceptible

- Variable Pathogenicity
 - M. haemophilum and M. marinum
 - M. fortuitum
 - M. abcessus, M. chelonae, M. saopaulense, M. peregrinum

Clinical Signs

- None (subclinical)
- Myositis, ulcerations
- Granulomatous lesions– EAI
- Exophthalmia
- Anorexia, lethargy
- Dropsy/Edema
- Death

Prevention

Ubiquitous in the aquatic environment

Exclusion of all species likely cost prohibitive

- Surface sanitization of embryos
 - Variable pathogen susceptibility
 - 30 ppm x 10 min for *M. marinum*
 - No M. marinum in 6 dpf larvae
- Disinfect facility surfaces and hands
 - 70% ethanol or other validated method

Prevention

One net/tank

- Enforce workflow order
 - Food first
 - Nursery
 - Main colony
 - Quarantine

Staff education and appropriate PPE

Mycobacteriosis and Human Safety

Unknown source

Human Treatment

- M. marinum
 - Non-healing wound and exposure to aquaria
- 3 months- 2 years of antibiotics
 - Multi-drug resistance
 - Combination therapy common
 - Hepatotoxicity
- Surgical drainage

Control of Infection

- Remove sick and dead fish
- Follow prevention procedures
- Cull elderly fish
 - Keep them lower
- Track sick/dead fish
 - System/Rack/Room
 - Lab/ User specific
 - Stock specific
- Conduct environmental testing
 - Where is it coming from and/or how being spread?

Treatment

- Pharmaceutical tx not recommended
 - Development of resistance
 - No definitive elimination of infection
- Implement Control Procedures

Depopulate and Disinfect

Control of Infection

TARLE 3	STRATEGIES '	TO MITIGATE	ISSUES FROM	A MYCOBACTERIAL	OUTBREAK
I ADLL J.	DIKALLUILS	IO MILIORIE	ISSUES TROM	A MITCODACTERIAL	OUIDKLAK

Strategy	Rationale	Practical effect				
Provide personnel training on mycobacteria	Guide for the Care and Use of Laboratory Animals, 2011	Reduces risk of zoonotic infection; Reduces pathogen vectors				
Wear personal protective equipment (gloves)	Guide for the Care and Use of Laboratory Animals, 2011	Reduces risk of zoonotic infection				
Use 70% ethanol to disinfect facility surfaces and hands	Mainous 2005	Eliminates bacteria on facility surfaces and hands				
Use embryo surface disinfection	Our experimental results	Reduces bacterial counts on embryo chorion				
Track diseased fish with tank labels	Guide for the Care and Use of Laboratory Animals, 2011, and observations at UO	Provides surveillance data				
Perform environmental sampling	Adapted from rodent health monitoring. Pritchett-Corning 2014.	Provides surveillance data				
Plan and direct personnel movements	Guide for the Care and Use of Laboratory Animals, 2011	Reduces pathogen spread through personnel movements				
Remove elderly fish	Keller 2004 and Sasaki 2013	Removes potential disease carriers				
Remove dead and moribund fish	Kent 2009	Removes potential disease carriers				
Place young fish highest on housing racks	"Because water is an excellent vehicle for pathogens." Kent 2009	Reduces risk of pathogen spread through water spill				
Dedicate wild-type fish for outcrosses	Noga 2010 and Murray 2012	Reduces pathogen spread through shared fish for outcrosses				
Remove spawn water and water from tank changes from RAS	Adapted from Murray 2012	Eliminates potentially pathogenic bacteria from RAS				
Change tanks every 3 weeks	Observations in our facility	Reduces biofilm and algae				
Evaluate and validate sanitation	Guide for the Care and Use of	Reduces pathogen spread through				
	Laboratory Animals, 2011	soiled equipment				

Mason, T. et al. 2016

Parasites

Nematodiasis: *Pseudocapilliaria* tomentosa

- Capillarid nematode
- Thin, transparent
 worms in lumen of the
 intestine
- Import of infected fish

David Maley, et al.

Transmission

- Direct Transmission
 - Co-habitation/spawning with infected fish
 - Ingestion of eggs
 - Clinical signs within 2 weeks

- Indirect Transmission
 - Ingestion of infected hosts
 - oligochaetes

Clinical Signs

- None
- "Bulge" in posterior abdomen
- Darker in color
- Lethargy
- Death

Seyed-Mohammadreza Samaee. Zebrafish. 2015 June

Treatment Options

- Fenbendazole soaked artemia +/-algae
 - Daily or twice daily treatment x 3 d, repeated in 2 weeks
 - Effective on nematode adults only
- Mebendazole or Praziquantel soaked artemia
 - + algae
 - Twice daily treatment x 3 days
 - Eliminates parasite eggs + adults
 - Anorexia & lethargy x 3 days in sick with Praz
 - Anorexia x 3 days/lethargy

Treatment Options

- Ivermectin
 - Soaked artemia + algae
 - Twice daily x 1 d
 - Eliminates infection eggs + adults
 - Coated pelleted feed*
 - Twice daily, twice/week x 4 weeks
 - Safety concerns- narrow margin of safety
- See earlier slide re: treatment considerations

Myxidium streisingeri

- Coelozoic parasite
 - Typically required intermediate host
 - Life cycle currently unknown

Courtesy of ZIRC

- No associated clinical signs
 - Mesonephric ducts and the lumen of the kidney tubules
 - No appreciable histolopathologic changes

Protozoan Parasites

- Many species may infect zebrafish
 - Pet stores and ornamental fish

Piscinoodinium pillulare

"velvet disease"

http://goldfish2care4.com/gol dfish-diseases/velvet.html

Ichthyophthirius

https://c1.staticflickr.com/5/4043/4324457486_558b2384ac_b.jpg

Treatment

- Check water quality!
- Temperature Increase
 - Standard housing temps= 4-day life cycle
 - 30° can kill parasite (decreased O₂)
- Salt bath: 2-3ppm
- Formalin bath, Malachite Green, Copper sulfite
- Treatment considerations...

Parasite Prevention

- Effectiveness of egg surface sanitization is not known for all parasites
 - 3000 ppm chlorine for *P. tomentosa*
 - Ensure adequate agitation
- Treat incoming fish of unknown health status
- Be careful with your "import" water!
- Adequate disinfection of equipment
 - 50 or 60 °C for 30 min or 1 h or *P. tomentosa*
- Maintain good water quality

Fungal Infections

- Opportunistic pathogens
 - Saprolegnia brachydanis
 - Exophiala sp.
- Direct transmission
 - Fungus on inanimate objects or other fish contacts damaged skin

Courtesy of J. Cockington

Treatment

- Check water quality and minimize stress
- Check for "hiding" debris
 - Adequate sanitization essential
- Rinse/sanitize embryos
- Salt bath
- Methylene blue

Viral Infections

- Endogenous retroviruses described
- One report of infection by Red-spotted grouper nervous necrosis virus
- No naturally transmissible viruses that cause disease have been identified at this time*
- Susceptible to other viruses
 - Spring Viremia of Carp
 - IPNV
 - ISKNV
 - IHNV

Spring Viremia of Carp Virus

- Rhabdovirus
- Hemorrhagic viremia in cyprinids
 - Cyprinus carpio primary host
- Wild or commercial fish
- < 17 °C
- Intraceoelomic injection can result in infection in zebrafish
- No natural infections known

References

- Babamahmoodi, Farhang, et al., Review of Mycobacterium marinum Infection Reported From Iran and Report of Three New Cases With Sporotrichoid Presentation, Iranian Red Crescent Medical Journal. 16(2): E10120, pp 1-6.
- Cali A, Kent M, Sanders J, Pau C, Takvorian PM. Development, Ultrastructural Pathology, and Taxonomic Revision of the Microsporidial Genus, *Pseudoloma* and its Type Species *Pseudoloma neurophilia*, in Skeletal Muscle and Nervous Tissue of Experimentally Infected Zebrafish *Danio rerio*. *The Journal of eukaryotic microbiology*. 2012;59(1):40-48. doi:10.1111/j.1550-7408.2011.00591.x.
- Carlssona, Gunnar, et al.; Toxicity of 15 veterinary pharmaceuticals in zebrafish (Danio rerio) embryos, Aquatic Toxicology, Volume 126, 15 January 2013, Pages 30–41
- Ching-Hung Shen and Lisa A. Steiner. Genome Structure and Thymic Expression of an Endogenous Retrovirus in Zebrafish. Zebrafish. J Virol. 2004;78:899–911
- Chow, F. W., Xue, L., & Kent, M. L. (2016). Retrospective study of the prevalence of *Pseudoloma neurophilia* shows male sex bias in zebrafish *Danio rerio* (Hamilton-Buchanan). *Journal of Fish Diseases*, *39*(3), 367–370. http://doi.org/10.1111/jfd.12328
- Collymore C, Watral V, White JR, et al. Tolerance and efficacy of emamectin benzoate and ivermectin for the treatment of Pseudocapillaria tomentosa in laboratory zebrafish (Danio rerio). Zebrafish 2014;11:490–497.
- Dykstra, M.J., K.M. Astrofsky, M.D. Schrenzel, J.G. Fox, R.A. Bullis, S. Farrington, L. Sigler, M.G. Rinaldi, M.R. McGinnis. "High Mortality in a Large-scale Zebrafish Colony (Brachydanio rerio Hamilton & Buchanan, 1822) Associated with Lecythophora mutabilis (van Beyma) W. Gams & McGinnis." <u>Comparative Medicine</u>. 51(4): 361-8, 2001.
- Harriff MJ(1), Bermudez LE, Kent ML. Experimental exposure of zebrafish, Danio rerio (Hamilton), to Mycobacterium marinum and Mycobacterium peregrinum reveals the gastrointestinal tract as the primary route of infection: a potential model for environmental mycobacterial infection. 1. J Fish Dis. 2007 Oct;30(10):587-600
- Hawke, JP et al, Edwardsiellosis Caused by Edwardsiella ictaluri in Laboratory Populations of Zebrafish Danio rerio, Journal of Aquatic Animal Health, Volume 25, Issue 3, 2013, pages 171-183

References

- Kent, M.L., J. K. Bishop-Stewart, J. L. Matthews, and J.M. Spitsbergen. 2002. Pseudocapillaria tomentosa, a nematode pathogen of zebrafish (Danio rerio) kept research colonies and associated neoplasms. Comp. Med. 52; 362-367
- Kent ML(1), Harper C, Wolf JC. Documented and potential research impacts of subclinical diseases in zebrafish. ILAR J. 2012;53(2):126-34. doi: 10.1093/ilar.53.2.126
- Kent, M.L., and T.T. Poppe. 1998. Diseases of seawater netpen-reared salmonids. Pacific Biological Station Press, Nanaimo,
 British Columbia, Canada. 138 pp
- Lawrence, C. Judith S. Eisen, Zoltán M. Varga. Husbandry and Health Program Survey Synopsis
- Zebrafish. Jun 2016, 13(S1): S-5-S-7.
- Maley, David, et al. A Simple and Efficient Protocol for the Treatment of Zebrafish Colonies Infected with Parasitic Nematodes, Zebrafish. 2013 Sep;10(3):447-50. doi: 10.1089/zeb.2013.0868. Epub 2013 Jun 28.
- Manshadi, A.R. Golchin, M. Masoumian, B. Jalali Jafari and M. Barzegar Dowlatabadi, 2012. Protozoan and Myxozoan Infections in Some Fishes of Parishan Lake. *Asian Journal of Animal and Veterinary Advances, 7: 842-850.*
- Martins, M. L., Watral, V., Rodrigues-Soares, J. P. and Kent, M. L. (2016), A method for collecting eggs of *Pseudocapillaria tomentosa* (Nematoda: Capillariidae) from zebrafish*Danio rerio* and efficacy of heat and chlorine for killing the nematode's eggs. J Fish Dis. doi:10.1111/jfd.12501
- Mason T, Snell K, Mittge E, Melancon E, Montgomery R, McFadden M, Camoriano J, Kent ML, Whipps CM, Peirce J.
 Strategies to Mitigate a Mycobacterium marinum Outbreak in a Zebrafish Research Facility. Zebrafish. 2016 Jul;13 Suppl 1:S77-87. doi: 10.1089/zeb.2015.1218.
- Matthews, J.L., A.M.V. Brown, K. Larison, J.K. Bishop-Stewart, P.Rogers, M.L Kent. "Pseudoloma neurophilia n. g., n. sp., a
 New Microsporidium from the Central Nervous System of the Zebrafish (Danio rerio)." Journal of Eukaryotic Microbiology.
 48(2): 227-233, 2001.
- Monaghan, S.R., M.L. Kent, V.G. Watral, R.J. Kaufman, L.E.J. Lee, and N.C. Bols. "Animal cell cultures in microsporidial research and their specific use for fish microsporidia." <u>In Vitro Cellular & Developmental Biology</u>. 45: 135-147, 2009.
- Murray KN, et al. Transmission, diagnosis, and recommendations for control of Pseudoloma neurophilia infections in laboratory zebrafish (Danio rerio) facilities. Comp Med. 2011 Aug;61(4):322-9.

References

- Murray, KN and Peterson, TS. Pathology in Practice. *Journal of the American Veterinary Medical Association*. 2015;246(2):201-203. doi:10.2460/javma.246.2.201.
- Nguyen,C. (2004) Mycobacterium marinum. N Engl J Med. 350(9): e8.
- Ramsay et al. Pseudoloma neurophilia infections in zebrafish Danio rerio: effects of stress on survival, growth, and reproduction. Dis Aquat Organ. 2009, Dec 22; 88(1): 69-84
- Sanders JL, et al (2013) Verification of Intraovum Transmission of a Microsporidium of Vertebrates: *Pseudoloma neurophilia* Infecting the Zebrafish, *Danio rerio*. PLoS One, September 23 8(9).
- Sanders, J.L., C. Lawrence, D.K. Nichols, J.F. Brubaker, T.S. Peterson, K. N.. Murray, M. L. Kent. "*Pleistophora hyphessobryconis* (Microsporidia) infecting zebrafish *Danio rerio* in research facilities.: Diseases of Aquatic Organisms. 91: 47-56, 2010.
- Sanders JL, Peterson TS, Kent ML. Early Development and Tissue Distribution of *Pseudoloma neurophilia* in the Zebrafish, *Danio rerio*. *The Journal of eukaryotic microbiology*. 2014;61(3):238-246. doi:10.1111/jeu.12101.
- Sanders, Justin L., Watral Virginia, Stidworthy Mark F., and Kent Michael L. **Expansion of the Known Host Range of the Microsporidium, Pseudoloma neurophilia**. Zebrafish 2016 13 S1, S-102 -S-106
- Seyed-Mohammadreza Samaee. Experimental Assessment of the Efficacy of Five Veterinary Broad-Spectrum Anthelmintics to Control the Intestinal Capillariasis in Zebrafish (Danio rerio). Zebrafish. 2015 June; 12(3): 255–267. Published online 2015 April 9. doi: 10.1089/zeb.2014.1043
- Spitsbergen JM, Buhler DR, Peterson TS. Neoplasia and Neoplasm Associated Lesions in Laboratory Colonies of Zebrafish Emphasizing Key Influences of Diet and Aquaculture System Design. ILAR journal / National Research Council, Institute of Laboratory Animal Resources. 2012;53(2):114-125. doi:10.1093/ilar.53.2.114.
- Whipps, Christopher M., Christine Lieggi, and Robert Wagner, Mycobacteriosis in Zebrafish Colonies, ILAR J. 2012;53(2):95-105.
- Whipps CM, Murray KN, Kent ML. OCCURRENCE OF A MYXOZOAN PARASITE MYXIDIUM STREISINGERI N. SP. IN LABORATORY ZEBRAFISH DANIO RERIO. The Journal of parasitology. 2015;101(1):86-90. doi:10.1645/14-613.1.

References- Websites & Books & Presentations

- http://zebrafish.org/zirc/health/diseaseManual.php
- https://wiki.zfin.org/display/prot/Fish+Diseases
- http://nsf.gov/news/news images.jsp?cntn id=105661&org=NSF
- http://www.webs.uidaho.edu/epscor/highlighted_success_stories.htm
- http://zebrafish.med.utah.edu/facility.php
- http://www.uq.edu.au/zebrafish/index.html?page=84351
- http://www.aqua-fish.net/show.php?h=tetraneon
- http://www.mold.ph/exophiala.htm
- Spitsbergen, J. "Diseases of Zebrafish." 2007 CL Davis Pathology of Genetically Engineered Rodents and Aquatic Species.
- "Health and Management of Laboratory Fish." (Conference). Bar Harbor, Maine. 2009.