STRESS IN ZEBRAFISH

Justin L. Sanders

Department of Biomedical Sciences

Carlson College of Veterinary Medicine

Oregon State University

Corvallis, OR

A STRESSFUL DEFINITION

"STRESS, IN ADDITION TO BEING ITSELF AND THE RESULT OF ITSELF, IS ALSO THE CAUSE OF ITSELF" (ROBERTS 1950)

- CAN BE USED TO REFER TO:
 - A STIMULUS: MENTAL, PHYSICAL
 - AN INDIVIDUAL'S AWARENESS OF THAT STIMULUS
 - THE PHYSICAL OR BEHAVIORAL RESPONSE TO THAT STIMULUS

STRESS!!!

- "THE NONSPECIFIC RESPONSE OF THE BODY TO ANY DEMAND FOR CHANGE
- -HANS SELYE 1936
- STRESSOR: A THREAT TO HOMEOSTASIS
- STRESS RESPONSE:
 - REACTION TO A REAL OR PERCEIVED STRESSOR
 - ROLE IS TO RESTORE HOMEOSTASIS
- ACUTE VS CHRONIC

FISH ARE VERY SUSCEPTIBLE TO STRESS

WHAT IS STRESSFUL TO A FISH?

- WATER CONDITIONS
 - CONTAMINANTS
 - AMMONIA
 - RAPID TEMPERATURE CHANGE
 - MALNUTRITION
 - INSUFFICIENT OR OVERABUNDANCE
 - NUTRIENT IMBALANCES
 - OSMOTIC IMBALANCE
- ENVIRONMENTAL
 - VIBRATION
 - LIGHT

- CROWDING
- NETTING
- HARASSMENT FROM OTHER
 FISH
- NOVELTY

THE GENERAL STRESS RESPONSE

- DEPENDENT UPON STRESSOR
 - GENERAL
 - SPECIFIC
 - E.G. HSP EXPRESSION DUE TO INCREASED TEMPERATURE
- PRIMARY
 - NEUROENDOCRINE RESPONSE: CATECHOLAMINES AND CORTISOL RELEASE
- SECONDARY
 - PHYSIOLOGIC AND METABOLIC RESPONSES
 - HYPERGLYCEMIA, VASODILATION OF ARTERIES IN GILL FILAMENTS, IMMUNE FUNCTION SUPPRESSION
- TERTIARY
 - SYSTEMIC CHANGES
 - MAY RESULT IN ADVERSE EFFECTS ON ANIMAL HEALTH

PRIMARY RESPONSE: THE HPA/I AXIS

- HYPOTHALAMIC-PITUITARY-ADRENAL/INTERRENAL AXIS
 - HYPOTHALAMUS: AREA OF THE BRAIN THAT SENDS A CHEMICAL MESSAGE TO THE PITUITARY GLAND
 - PITUITARY GLAND: WHEN STIMULATED SENDS A CHEMICAL MESSAGE INTO THE BLOOD TO THE ADRENAL GLANDS
 - ADRENAL GLANDS/INTERRENAL CELLS: RELEASE CORTISOL
- CONSERVED AMONG ALL VERTEBRATES

HORMONES: DRIVING THE RESPONSE

- CORTICOSTEROIDS
 - CORTISOL: PRIMARY NEUROENDOCRINE RESPONSE TO STRESS
- CATECHOLAMINES
 - ADRENALINE AND NORADRENALINE
- MAIN ROLE OF BOTH IS TO MAKE ENERGY AVAILABLE FOR FLIGHT RESPONSE

Carl B. Schreck, Lluis Tort, 1 - The Concept of Stress in Fish, Editor(s): Carl B. Schreck, Lluis Tort, Anthony P. Farrell, Colin J. Brauner, Fish Physiology, Academic Press, Volume 35, 2016, Pages 1-34,

THE STRESS RESPONSE

- NECESSARY MECHANISM TO OVERCOME CHALLENGES AND POSSIBLY RESTORE HOMEOSTASIS
- PRIMARY RESPONSE MAKES ENERGY AVAILABLE FOR NEEDED RESPONSE (E.G. FLEEING A PREDATOR)
- TERTIARY RESPONSES CAN BE MALADAPTIVE

THE STRESS RESPONSE

- LOW LEVELS OF CORTISOL AND CATECHOLAMINES ARE NECESSARY FOR ROUTINE LIFE FUNCTIONS
 - GROWTH
 - THE IMMUNE SYSTEM
 - DEVELOPMENT
 - LEARNING

HOW TO MEASURE PRIMARY/SECONDARY STRESS RESPONSE

- BIOCHEMICAL ASSAYS
 - PLASMA CORTISOL
 - PLASMA CATECHOLAMINES
 - HEAT SHOCK PROTEINS
- IMMUNE FUNCTION
- GENE EXPRESSION PATTERNS (E.G. HSP EXPRESSION)
- MEASUREMENT OF FISH STEROIDS IN WATER

HOW TO MEASURE TERTIARY STRESS RESPONSE

- WHOLE BODY OR ORGAN WEIGHT MEASUREMENTS (E.G. CONDITION FACTOR, GONADOSOMATIC INDEX)
- MACRO/MICROSCOPIC ANATOMY
- CHANGES IN GROWTH
- DISEASE RESISTANCE
- SWIMMING PERFORMANCE
- BEHAVIOR

WHY MEASURE STRESS?

- REDUCING STRESS CAN MAXIMIZE GROWTH AND SURVIVAL
- MINIMIZE THE EFFECTS OF STRESS ON RESEARCH ENDPOINTS
- TO DETERMINE HOW HEALTH, PERFORMANCE, AND WELFARE STATUS OF FISH ARE BEING INFLUENCED BY CAPTIVITY
 - PROVIDE EMPIRICAL EVIDENCE OF THE BENEFITS OF A PARTICULAR TREATMENT TO THE WELFARE OF FISH

FACTORS AFFECTING IMPACTS OF STRESS

- ENVIRONMENT
 - TEMPERATURE: AFFECTS RATE OF REACTIONS
 - OXYGEN CONCENTRATION
- ENVIRONMENTAL HISTORY
- DEVELOPMENTAL LIFE STAGE
- GENETICS/EPIGENETICS
- SOCIAL HIERARCHY
- NUTRITION STATUS
- PATHOGEN INFECTION

DANIO RERIO

- CAN ADAPT TO A WIDE VARIETY OF ENVIRONMENTAL PARAMETERS
 - CONDUCTIVITY
 - TEMPERATURE
 - DISSOLVED OXYGEN

NATURAL HABITAT OF D. RERIO

- CENTERED AROUND THE GANGES AND BRAHMAPUTRA RIVER BASINS
- ZEBRAFISH FOUND IN A BROAD RANGE OF TEMPERATURES IN THESE WATERS
 - UP TO ~40 C!

Engeszer et al 2007. Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 4: 21–40.

FACTORS AFFECTING IMPACTS OF STRESS

- ENVIRONMENT
 - TEMPERATURE: AFFECTS RATE OF REACTIONS
 - OXYGEN CONCENTRATION
- ENVIRONMENTAL HISTORY
- DEVELOPMENTAL LIFE STAGE
- GENETICS/EPIGENETICS
- SOCIAL HIERARCHY
- NUTRITION STATUS
- PATHOGEN INFECTION

LIFE STAGES AND CORTISOL

Carl B. Schreck, Lluis Tort, 1 - The Concept of Stress in Fish, Editor(s): Carl B. Schreck, Lluis Tort, Anthony P. Farrell, Colin J. Brauner, Fish Physiology, Academic Press, Volume 35, 2016, Pages 1-34,

EMBRYO DENSITY

Peter J. Steenbergen, Michael K. Richardson, Danielle L. Champagne, The use of the zebrafish model in stress research, Progress in Neuro-Psychopharmacology and Biological Psychiatry, Volume 35, Issue 6, 2011, Pages 1432-1451,

CROWDING

- ADDITIONAL SEQUELAE
 - POOR WATER QUALITY
 - EXPOSURE TO ORGANIC WASTES
 - CONSPECIFIC AGGRESSION
 AND PREDATION

Husbandry of Zebrafish, *Danio Rerio*, and the Cortisol Stress Response
Michail Pavlidis, Nikoletta Digka, Antonia
Theodoridi, Aurora Campo, Konstantinos
Barsakis, Gregoris Skouradakis, Athanasios
Samaras, and Alexandra Tsalafouta
Zebrafish 2013 10:4, 524-531

FACTORS AFFECTING IMPACTS OF STRESS

- ENVIRONMENT
 - TEMPERATURE: AFFECTS RATE OF REACTIONS
 - OXYGEN CONCENTRATION
- ENVIRONMENTAL HISTORY
- DEVELOPMENTAL LIFE STAGE
- GENETICS/EPIGENETICS
- SOCIAL HIERARCHY
- NUTRITION STATUS
- PATHOGEN INFECTION

RAMSEY ET AL 2006

 DIFFERENCES IN FASTED VS FED FISH CORTISOL RESPONSE TO CROWDING

Fig. 2. Experiment 2: Crowding increases cortisol levels in large, but not small tanks. Mean whole-body cortisol (\pm S.E.M.) (ng/g fish) for 76 L glass aquaria and 4 L plastic tank treatments. Different letters above the standard error bars indicate a significant difference between treatment groups (n=0.0002·n=20-25)

CAPTURE, TRANSPORT, HANDLING

- MAGNITUDE OF STRESS RESPONSE VARIES AMONG GENETIC LINES
- OFTEN CLINICAL EFFECTS ARE NOT APPARENT UNTIL SEVERAL DAYS AFTER EVENT
- POTENTIAL FOR CAPTURE MYOPATHY (RHABDOMYOLYSIS)
- ADDITIONAL SEQUELAE
 - CROWDING
 - HYPOXIA
 - PHYSICAL TRAUMA
 - BAROMETRIC DISTURBANCE

HYPER/HYPOTHERMIA

- RAPID FLUCTUATIONS
 - ABSENT OR IMPROPER ACCLIMATION
- INAPPROPRIATE WATER TEMPERATURE
 - BEYOND HIGH OR LOW RANGE OF TOLERANCE
- HAS BEEN USED EXPERIMENTALLY IN PATHOGEN CHALLENGE STUDIES
- TEMPERATURE CAN ALTER IMMUNE FUNCTION
- HYPOXIA DUE TO DECREASED 02 CAPACITY

HYPOXIA

- ZEBRAFISH CAN ADAPT TO AND SURVIVE HYPOXIC WATER CONDITIONS FOR WEEKS
 - GILL ALTERATIONS
 - BEHAVIORAL PHENOTYPE
- SHORT-TERM AIR EXPOSURE INCREASES CORTISOL LEVELS IN FISH (RAMSAY ET AL 2009)

ACUTE STRESS

- INTENSE
- SHORT-LIVED

Grzelak, A. K., Davis, D. J., Caraker, S. M., Crim, M. J., Spitsbergen, J. M., & Wiedmeyer, C. E. (2017). Stress Leukogram Induced by Acute and Chronic Stress in Zebrafish (*Danio rerio*). *Comparative Medicine*, *67*(3), 263–269.

CHRONIC STRESS

- GENERALLY LESS INTENSE
- OCCURS DURING A PROLONGED PERIOD

	Morning	Evening
Day 1	Chasing (8 min)	Tank changes (x6)
Day 2	Over-crowding (60 min)	Dorsal body exposure (2 min)
Day 3	Social isolation (30 min)	Tank changes (x6)
Day 4	Dorsal body exposure (2 min)	Chasing (8 min)
Day 5	Tank changes (x6)	Dorsal body exposure (2 min)

Grzelak, A. K., Davis, D. J., Caraker, S. M., Crim, M. J., Spitsbergen, J. M., & Wiedmeyer, C. E. (2017). Stress Leukogram Induced by Acute and Chronic Stress in Zebrafish (*Danio rerio*). *Comparative Medicine*, *67*(3), 263–269.

Grzelak, A. K., Davis, D. J., Caraker, S. M., Crim, M. J., Spitsbergen, J. M., & Wiedmeyer, C. E. (2017). Stress Leukogram Induced by Acute and Chronic Stress in Zebrafish (*Danio rerio*). *Comparative Medicine*, *67*(3), 263–269.

RESULTS OF STRESS

- MORTALITY
- SUSCEPTIBILITY TO OPPORTUNISTIC PATHOGENS
- LOW FECUNDITY

Fedoruk, A N. A management perspective on stress and infectious diseases in Clarias farming. 1981

BEHAVIORAL RESPONSES TO STRESS

- AVOIDANCE
- THIGMOTAXIS
- ALARM MOVEMENT
 - FREEZING
 - DARTING
- ALTERED SHOALING BEHAVIOR

WHERE CAN YOU SEE THE EFFECTS OF STRESS?

- GILLS
- LIVER
- SKIN
- REPRODUCTIVE SYSTEM
- NERVOUS SYSTEM
- CARDIOVASCULAR SYSTEM
- SYSTEMIC/MULTIORGAN

- RELATIVELY FRAGILE STRUCTURES
- CONTINUALLY EXPOSED TO EXTERNAL ENVIRONMENT
 - HYPOXIA
 - HYPO/HYPERTHERMIA
 - OSMOTIC STRESS
 - CHEMICALS

Figure 1 Nonspecific stress response in the gills of adult Atlantic salmon (*Salmo salar* L.). (A) Normal gill (two adjacent filaments). (B) Findings associated with several types of stressors; the most prominent changes are mucus cell hyperplasia (arrow) and epithelial lifting (arrowhead). Bar = 50 microns.

Claudia Harper, Jeffrey C. Wolf; Morphologic Effects of the Stress Response in Fish, *ILAR Journal*, Volume 50, Issue 4, 1 January 2009, Pages 387–396

MALNUTRITION

- INSUFFICIENCY OR OVERABUNDANCE OF NUTRIENTS
- RELATIVE NUTRIENT IMBALANCE
- DIFFICULT TO SEPARATE STRESS RESPONSE FROM DIRECT EFFECTS
- FOOD DEPRIVATION CAN LEAD TO REDUCED STRESS RESISTANCE

Claudia Harper, Jeffrey C. Wolf; Morphologic Effects of the Stress Response in Fish, *ILAR Journal*, Volume 50, Issue 4, 1 January 2009, Pages 387–396

Fecundity: Eggs laid vs. parasite area Stressed Fish

Danio rerio Experimental Exposure, Stress and Fecundity – AB experiment. Number of eggs laid vs. parasite (xenoma) area (%) at wk 20 post-exposure to *Pseudoloma*. A) Among the *Pseudoloma*-infected-stressed fish the relationship was described by the following equation: eggs laid = $80 - 61 \ln$ (xenoma area); $R^2 = 0.25$; p=0.025

Stress-induced analgesia

Stress, fear, anxiety blunts the response of larval zebrafish to noxious substances

FIG 4. CHANGE IN VELOCITY (%) SHOWN BY 5DPF ZERRAFISH EXPOSED TO DIFFERENT TREATMENTS.

Fig 5. Change in time spent active (%) shown by 5dpf zebrafish exposed to different treatments.

Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU (2017) Impact of stress, fear and anxiety on the nociceptive responses of larval zebrafish. PLOS ONE 12(8): e0181010. https://doi.org/10.1371/journal.pone.0181010 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0181010

HOW TO COMPLETELY ELIMINATE STRESS IN FISH

HOW TO MINIMIZE STRESS IN FISH

- OPTIMIZE MANAGEMENT/HUSBANDRY PRACTICES
- OBSERVE YOUR FISH

