ZEBRAFISH CHRONIC DISEASES AND RESEARCH OUTCOMES

Justin L. Sanders

Department of Biomedical Sciences

7th Annual International Zebrafish Husbandry Course

PATHOGENS IN ZEBRAFISH FACILITIES 2006-2015: – CA 10,000 FISH, 100 LABORATORIES

NEGATIVE IMPACTS OF CHRONIC INFECTIONS IN ZEBRAFISH

Wide range of external indicators of infection

- Husbandry:
 - Reduced fecundity
 - Increased mortality
- Experimental
 - Non-protocol induced variation

Kent ML, Harper C, Wolf JC (2012) Documented and potential research impacts of subclinical diseases in zebrafish. ILAR J 53: 126–134.

CLINICAL SIGNS OF DISEASE

COMMON MICROSPORIDIAN PARASITES OF ZEBRAFISH

- ▶ Microsporidia
 - Pseudoloma neurophilia

Pleistophora hyphessobryconis

IMPACT ON GROWTH: WEIGHT

Ramsay, J. M., V. Watral, C. B. Schreck, and M. L. Kent. 2009. *Pseudoloma neurophilia* infections in zebrafish *Danio rerio*: effects of stress on survival, growth, and reproduction. Diseases of Aquatic Organisms 88: 69–84.

IMPACT ON REPRODUCTION: EGG PRODUCTION

Tank 1: 69% (11/16) Tank 2: 82% (14/17)

Ramsay, J. M., V. Watral, C. B. Schreck, and M. L. Kent. 2009. *Pseudoloma neurophilia* infections in zebrafish *Danio rerio*: effects of stress on survival, growth, and reproduction. Diseases of Aquatic Organisms 88: 69–84.

CHRONIC INFECTION: IMPACTS ON BEHAVIOR

Dr. Sean Spagnoli (OSU, DVM pathologist)

BEHAVIOR STUDIES

▶ Infected fish are "hyper vigilant"

Contents lists available at ScienceDirect

Behavioural Brain Research

journal homepage: www.elsevier.com/locate/bbr

The common neural parasite Pseudoloma neurophilia is associated with altered startle response habituation in adult zebrafish (Danio rerio): Implications for the zebrafish as a model organism

Sean Spagnoli a, 1, Lan Xue b, Michael L. Kent C, e

^{2 *} Oregon State University, Departments of Biomedical Sciences, USA b Oregon State University, Departments of Statistics, USA

L'Oregon State University, Departments of Microbiology, USA

T1-T10 VELOCITY DIFFERENCES AKA, WAS THE SLOPE DIFFERENCE A TANK EFFECT?

Category	Difference
Control	8.193
Ex Negative	7.45
Infected	4.047

Comparison	p-value
Control vs Ex Negative	0.632
Control and Ex Negative vs Infected	0.0486

CONCLUSION

- Infected fish had a shallower habituation slope and less of a difference between T1 and T10 than control and exposed negative fish.
- P. neurophilia infection inhibits habituation to the startle response by approx. half
- Also, subclinical fish avoid capture compared to uninfected.

SHOALING TEST: MEAN INTERFISH DISTANCE POST-EXPOSURE

Exposed shoals had a mean interfish distance approximately 15% LESS than control shoals.

(p=0.026, U-test)

STUDY 3. ONGOING COLLABORATIVE RESEARCH

- Kent, Sanders and Spagnoli: OSU
- Polavieja, Hinz, Certal:
 - ▶ Champalimaud, Lisbon

A. Pérez-Escudero, J. Vicente-Page, R.C. Hinz, S. Arganda, G.G. de Polavieja, idTracker: Tracking individuals in a group by automatic identification of unmarked animals, *Nature Methods* (2014) (pdf) (web) software at www.idtracker.es)

Effects of infection, strains, sex, etc.

Clinically infected fish

Chronically infected fish

STUDY 3. PRELIMINARY CONCLUSIONS

- ► Clinical fish have > interfish distance
- ▶ Subclinical have < interfish distance
- May offset for mean values compared to controls,
- ▶ But probably more variable

COMMON CHRONIC INFECTIONS OF ZEBRAFISH

> Pseudocapillaria tomentosa

MICROBIOME STUDIES

- ► How does intestinal nematode infection alter the gut microbiome?
 - ► *P. tomentosa* infection of adult zebrafish

Christopher Gaulke, Thomas Sharpton, Michael Kent

PARASITE BURDEN IS CORRELATED WITH MICROBIAL ABUNDANCE

ABUNDANCE OF MICROBIAL TAXA VARIES WITH LENGTH OF INFECTION

Pseudocapillaria tomentosa

From toxicology/tumor study (Spitzbergen et al. 2000)

Fish exposed to DMBA (7,12-dimethylbenze[a]anthrace ne)

- Of infected fish, 50% had intestinal neoplasms
- Of uninfected fish, 13% had neoplasms
- χ^2 significant (P=0.03)

Figure 2. Photomicrograph of a section of a zebrafish with Pseudocapillaria tomentosa infection and intestinal neoplasms. Notice diffuse, severe chronic inflammation, extending from the lamina propria (LP) into the visceral cavity. $P = \inf$ ammation in pancreas; arrow = nematode. H&E stain; bar = 100 µm.

COMMON CHRONIC INFECTIONS OF ZEBRAFISH

- ▶ Mycobacteria
 - ► M. marinum

Mycobacterium chelonae

MYCOBACTERIUM SPP.

- ► M. marinum, M. haemophilum
 - ► Infections generally clinical; high mortalities

INFLAMMATORY CYTOKINES UPREGULATED IN SUBCLINICAL M. CHELONAE INFECTION

M. CHELONAE: NO EFFECT ON SHOALING

FLUORESCENT NODULES AND *PSEUDOLOMA*

Kimble Frazer and Kylie West University of Oklahoma

> ZEBRAFISH Volume 11, Number 3, 2014 Mary Ann Liebert, Inc. DOI: 10.1089/zeb.2013.0933

Fish Haus

Unusual Fluorescent Granulomas and Myonecrosis in *Danio Rerio* Infected by the Microsporidian Pathogen Pseudoloma Neurophilia

Kylie West, Rodney Miles, 23 Michael L. Kent, 4 and J. Kimble Frazer 1

IMMUNE SUPPRESSION/ABLATION

- ▶ Hematopoiesis
- ▶ Xenotransplantation

- ► Gamma irradiation
- ▶ Dexamethasone

Spagnoli, S., J. Sanders, V. Watral, and M. L. Kent. 2016. *Pseudoloma neurophilia* Infection Combined with Gamma Irradiation Causes Increased Mortality in Adult Zebrafish (*Danio rerio*) Compared to Infection or Irradiation Alone: New Implications for Studies Involving Immunosuppression. Zebrafish 0: 1–8.

Published in final edited form as:

Dis Aquat Organ. 2010 July 26; 91(1): 47-56. doi:10.3354/dao02245.

Pleistophora hyphessobryconis (Microsporidia) infecting zebrafish (Danio rerio) in research facilities

Justin L Sanders 1,*, Christian Lawrence², Donald K Nichols^{3,4}, Jeffrey F. Brubaker⁴, Tracy S Peterson¹, Katrina N. Murray⁵, and Michael L Kent¹

Boston, Aquatic Resources Program, Boston, Massachusetts 3US Army Center for Environmental Diseases, Fort Detrick, Maryland ⁵Zebrafish International Resource Center, University of Oregon, ¹Department of Microbiology, Oregon State University, Corvallis, Oregon ²Children's Hospital Health Research, Fort Detrick, Maryland ⁴US Army Medical Research Institute of Infectious Eugene, Oregon

THREE DIAGNOSTIC CASES FROM ZEBRAFISH FACILITIES

- ▶ Case History
 - ► Lab A) surface disinfected eggs
 - ► Lab B) unknown history
 - ► Lab C) surface disinfected eggs
 - ► Most prevalent in CG1 isogenic line used for tissue transplant

PLEISTOPHORA HYPHESSOBRYCONIS

- ▶ Commonly known as "Neon tetra disease"
- ▶Infects many aquarium fishes
- ▶ Infects skeletal muscle
 - ▶ Massive involvement of myocytes
 - ▶ Necrosis and inflammation

HIGH MAGNIFICATION OF *P.H.* IN MUSCLE WITH DEVELOPMENTAL STAGES

